Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Nucleic Acids Res ; 45(18): 10824-10836, 2017 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-28977579

RESUMO

Cytoplasmic maturation of precursors to the small ribosomal subunit in yeast requires the intervention of a dozen assembly factors (AFs), the precise roles of which remain elusive. One of these is Rio1p that seems to intervene at a late step of pre-40S particle maturation. We have investigated the role played by Rio1p in the dynamic association and dissociation of AFs with and from pre-40S particles. Our results indicate that Rio1p depletion leads to the stalling of at least 4 AFs (Nob1p, Tsr1p, Pno1p/Dim2p and Fap7p) in 80S-like particles. We conclude that Rio1p is important for the timely release of these factors from 80S-like particles. In addition, we present immunoprecipitation and electron microscopy evidence suggesting that when Rio1p is depleted, a subset of Nob1p-containing pre-40S particles associate with translating polysomes. Using Nob1p as bait, we purified pre-40S particles from cells lacking Rio1p and performed ribosome profiling experiments which suggest that immature 40S subunits can carry out translation elongation. We conclude that lack of Rio1p allows premature entry of pre-40S particles in the translation process and that the presence of Nob1p and of the 18S rRNA 3' extension in the 20S pre-rRNA is not incompatible with translation elongation.


Assuntos
Adenosina Trifosfatases/fisiologia , Biossíntese de Proteínas , Proteínas Serina-Treonina Quinases/fisiologia , Subunidades Ribossômicas Menores de Eucariotos/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiologia , Proteínas Nucleares/metabolismo , Elongação Traducional da Cadeia Peptídica , Polirribossomos/metabolismo , Proteínas Ribossômicas/metabolismo , Ribossomos/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
2.
EMBO J ; 29(1): 80-92, 2010 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-19893492

RESUMO

It is generally assumed that, in Saccharomyces cerevisiae, immature 40S ribosomal subunits are not competent for translation initiation. Here, we show by different approaches that, in wild-type conditions, a portion of pre-40S particles (pre-SSU) associate with translating ribosomal complexes. When cytoplasmic 20S pre-rRNA processing is impaired, as in Rio1p- or Nob1p-depleted cells, a large part of pre-SSUs is associated with translating ribosomes complexes. Loading of pre-40S particles onto mRNAs presumably uses the canonical pathway as translation-initiation factors interact with 20S pre-rRNA. However, translation initiation is not required for 40S ribosomal subunit maturation. We also provide evidence suggesting that cytoplasmic 20S pre-rRNAs that associate with translating complexes are turned over by the no go decay (NGD) pathway, a process known to degrade mRNAs on which ribosomes are stalled. We propose that the cytoplasmic fate of 20S pre-rRNA is determined by the balance between pre-SSU processing kinetics and sensing of ribosome-like particles loaded onto mRNAs by the NGD machinery, which acts as an ultimate ribosome quality check point.


Assuntos
Iniciação Traducional da Cadeia Peptídica , Subunidades Ribossômicas Menores de Eucariotos/genética , Subunidades Ribossômicas Menores de Eucariotos/metabolismo , Ribossomos/genética , Ribossomos/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Sequência de Bases , DNA Fúngico/genética , Fator de Iniciação 1 em Eucariotos/genética , Fator de Iniciação 1 em Eucariotos/metabolismo , Fator de Iniciação 3 em Eucariotos/genética , Fator de Iniciação 3 em Eucariotos/metabolismo , Cinética , Modelos Biológicos , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Polirribossomos/genética , Polirribossomos/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Precursores de RNA/genética , Precursores de RNA/metabolismo , Processamento Pós-Transcricional do RNA , RNA Fúngico/genética , RNA Fúngico/metabolismo , Subunidades Ribossômicas Maiores de Eucariotos/genética , Subunidades Ribossômicas Maiores de Eucariotos/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
3.
Nucleic Acids Res ; 40(9): 4086-96, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22238374

RESUMO

The brain cytoplasmic RNA, BC1, is a small non-coding RNA that is found in different RNP particles, some of which are involved in translational control. One component of BC1-containing RNP complexes is the fragile X mental retardation protein (FMRP) that is implicated in translational repression. Peptide mapping and computational simulations show that the tudor domain of FMRP makes specific contacts to BC1 RNA. Endogenous BC1 RNA is 2'-O-methylated in nucleotides that contact the FMRP interface, and methylation can affect this interaction. In the cell body BC1 2'-O-methylations are present in both the nucleus and the cytoplasm, but they are virtually absent at synapses where the FMRP-BC1-mRNA complex exerts its function. These results strongly suggest that subcellular region-specific modifications of BC1 affect the binding to FMRP and the interaction with its mRNA targets. We finally show that BC1 RNA has an important role in translation of certain mRNAs associated to FMRP. All together these findings provide further insights into the translational regulation by the FMRP-BC1 complex at synapses.


Assuntos
Proteína do X Frágil da Deficiência Intelectual/metabolismo , Regulação da Expressão Gênica , Biossíntese de Proteínas , RNA Citoplasmático Pequeno/metabolismo , Sinapses/metabolismo , Animais , Proteína do X Frágil da Deficiência Intelectual/química , Metilação , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Moleculares , Neurônios/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , RNA Mensageiro/metabolismo , RNA Citoplasmático Pequeno/química , RNA Citoplasmático Pequeno/genética
4.
Nucleic Acids Res ; 39(8): 3388-403, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21183462

RESUMO

Retroviruses require both spliced and unspliced RNAs for replication. Accumulation of Rous Sarcoma virus (RSV) unspliced RNA depends upon the negative regulator of splicing (NRS). Its 5'-part is considered as an ESE binding SR proteins. Its 3'-part contains a decoy 5'-splice site (ss), which inhibits splicing at the bona fide 5'-ss. Only the 3D structure of a small NRS fragment had been experimentally studied. Here, by chemical and enzymatic probing, we determine the 2D structure of the entire RSV NRS. Structural analysis of other avian NRSs and comparison with all sequenced avian NRSs is in favour of a phylogenetic conservation of the NRS 2D structure. By combination of approaches: (i) in vitro and in cellulo splicing assays, (ii) footprinting assays and (iii) purification and analysis of reconstituted RNP complex, we define a small NRS element retaining splicing inhibitory property. We also demonstrate the capability of the SR protein 9G8 to increase NRS activity in vitro and in cellulo. Altogether these data bring new insights on how NRS fine tune splicing activity.


Assuntos
Processamento Alternativo , Proteínas de Transporte Nucleocitoplasmático/metabolismo , RNA Viral/química , Proteínas de Ligação a RNA/metabolismo , Sequências Reguladoras de Ácido Ribonucleico , Vírus do Sarcoma de Rous/genética , Sequência de Bases , Sítios de Ligação , Células HeLa , Humanos , Dados de Sequência Molecular , Proteínas Nucleares , Conformação de Ácido Nucleico , RNA Viral/metabolismo , Fatores de Processamento de Serina-Arginina
5.
RNA Biol ; 9(2): 162-74, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22418843

RESUMO

Maturation of the 40S ribosomal subunit precursors in mammals mobilizes several non-ribosomal proteins, including the atypical protein kinase RioK2. Here, we have investigated the involvement of another member of the RIO kinase family, RioK3, in human ribosome biogenesis. RioK3 is a cytoplasmic protein that does not seem to shuttle between nucleus and cytoplasm via a Crm1-dependent mechanism as does RioK2 and which sediments with cytoplasmic 40S ribosomal particles in a sucrose gradient. When the small ribosomal subunit biogenesis is impaired by depletion of either rpS15, rpS19 or RioK2, a concomitant decrease in the amount of RioK3 is observed. Surprisingly, we observed a dramatic and specific increase in the levels of RioK3 when the biogenesis of the large ribosomal subunit is impaired. A fraction of RioK3 is associated with the non ribosomal pre-40S particle components hLtv1 and hEnp1 as well as with the 18S-E pre-rRNA indicating that it belongs to a bona fide cytoplasmic pre-40S particle. Finally, RioK3 depletion leads to an increase in the levels of the 21S rRNA precursor in the 18S rRNA production pathway. Altogether, our results strongly suggest that RioK3 is a novel cytoplasmic component of pre-40S pre-ribosomal particle(s) in human cells, required for normal processing of the 21S pre-rRNA.


Assuntos
Citoplasma/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Precursores de RNA/metabolismo , Subunidades Ribossômicas Menores de Eucariotos/enzimologia , Motivos de Aminoácidos , Sequência de Aminoácidos , Células HeLa , Humanos , Dados de Sequência Molecular , Ligação Proteica , Proteínas Serina-Treonina Quinases/química , RNA Ribossômico 18S/metabolismo , Subunidades Ribossômicas Menores de Eucariotos/metabolismo , Alinhamento de Sequência
6.
Biochimie ; 87(9-10): 889-95, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-16164996

RESUMO

The biogenesis of tRNA involves multiple reactions including post-transcriptional modifications and pre-tRNA splicing. Among the three domains of life, only Archaea have two different mechanisms for tRNA ribose methylation: site-specific 2'-O-methyltransferases and C/D guided-RNA machinery. Recently, the first archaeal tRNA 2'-O-methyltransferase, aTrm56, has been characterized. This enzyme is found in all archaeal genomes sequenced so far except one and belongs to the SPOUT family (class IV) of RNA methyltransferases. Its substrate is the conserved C56 in the T-loop of archaeal tRNAs. In the crenarchaeon Pyrobaculum aerophylum, in which no homologue of this methyltransferase is found, a box C/D guide sRNP insures the ribose methylation of C56. Moreover, a new twist on tRNA processing is the finding, in most euryarchaeal tRNAtrp genes, of a box C/D guide RNA within their intron specifying methylation at two sites. Modification of tRNA is an integral part of the complex maturation process of primary tRNA transcripts. In addition to their role in modification, both modification enzymes and C/D guide RNPs may have a chaperone function insuring the precise folding of the mature, functional tRNA.


Assuntos
Archaea/genética , RNA Arqueal/metabolismo , RNA de Transferência/biossíntese , Ribose/biossíntese , tRNA Metiltransferases/metabolismo , Archaea/enzimologia , Regulação da Expressão Gênica em Archaea , Humanos , Metilação , Conformação de Ácido Nucleico , RNA Antissenso , RNA Arqueal/biossíntese , Alinhamento de Sequência , DNA Metiltransferases Sítio Específica (Adenina-Específica)/química
7.
J Mol Biol ; 317(5): 631-49, 2002 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-11955014

RESUMO

The U4/U6.U5 tri-snRNP is a key component of spliceosomes. By using chemical reagents and RNases, we performed the first extensive experimental analysis of the structure and accessibility of U4 and U6 snRNAs in tri-snRNPs. These were purified from HeLa cell nuclear extract and Saccharomyces cerevisiae cellular extract. U5 accessibility was also investigated. For both species, data demonstrate the formation of the U4/U6 Y-shaped structure. In the human tri-snRNP and U4/U6 snRNP, U6 forms the long range interaction, that was previously proposed to be responsible for dissociation of the deproteinized U4/U6 duplex. In both yeast and human tri-snRNPs, U5 is more protected than U4 and U6, suggesting that the U5 snRNP-specific protein complex and other components of the tri-snRNP wrapped the 5' stem-loop of U5. Loop I of U5 is partially accessible, and chemical modifications of loop I were identical in yeast and human tri-snRNPs. This reflects a strong conservation of the interactions of proteins with the functional loop I. Only some parts of the U4/U6 Y-shaped motif (the 5' stem-loop of U4 and helix II) are protected. Due to difference of protein composition of yeast and human tri-snRNP, the U6 segment linking the 5' stem-loop to the Y-shaped structure and the U4 central single-stranded segment are more accessible in the yeast than in the human tri-snRNP, especially, the phylogenetically conserved ACAGAG sequence of U6. Data are discussed taking into account knowledge on RNA and protein components of yeast and human snRNPs and their involvement in splicesome assembly.


Assuntos
Conformação de Ácido Nucleico , RNA Nuclear Pequeno/química , RNA Nuclear Pequeno/metabolismo , Proteínas de Ligação a RNA/metabolismo , Ribonucleoproteínas Nucleares Pequenas/metabolismo , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Spliceossomos/metabolismo , Sequência de Bases , Células HeLa , Humanos , Substâncias Macromoleculares , Dados de Sequência Molecular , Ligação Proteica , Proteínas de Ligação a RNA/genética , Ribonucleoproteínas Nucleares Pequenas/genética , Spliceossomos/química , Spliceossomos/genética
8.
J Mol Biol ; 323(4): 629-52, 2002 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-12419255

RESUMO

Retroviral protein production depends upon alternative splicing of the viral transcript. The HIV-1 acceptor site A7 is required for tat and rev mRNA production. Production of the Tat transcriptional activator is highly controlled because of its apoptotic properties. Two silencer elements (ESS3 and ISS) and two enhancer elements (ESE2 and ESE3/(GAA)3) were previously identified at site A7. hnRNP A1 binds ISS and ESS3 and is involved in the inhibitory process, ASF/SF2 activates site A7 utilisation. Here, by using chemical and enzymatic probes we established the 2D structure of the HIV-1(BRU) RNA region containing site A7 and identified the RNA segments protected in nuclear extract and by purified hnRNP A1. ISS, ESE3/(GAA)3 and ESS3 are located in three distinct stem-loop structures (SLS1, 2 and 3). As expected, hnRNP A1 binds sites 1, 2 and 3 of ISS and ESS3b, and oligomerises on the polypurine sequence upstream of ESS3b. In addition, we discovered an unidentified hnRNP A1 binding site (AUAGAA), that overlaps ESE3/(GAA)3. On the basis of competition experiments, hnRNP A1 has a stronger affinity for this site than for ESS3b. By insertion of (GAA)3 alone or preceded by the AUA trinucleotide in a foreign context, the AUAGAA sequence was found to modulate strongly the (GAA)3 splicing enhancer activity. Cross-linking experiments on these heterologous RNAs and the SLS2-SLS3 HIV-1 RNA region, in nuclear extract and with recombinant proteins, showed that binding of hnRNP A1 to AUA(GAA)3 strongly competes the association of ASF/SF2 with (GAA)3. In addition, disruption of AUA(GAA)3 demonstrated a key role of this sequence in hnRNP A1 cooperative binding to the ISS and ESS3b inhibitors and hnRNP A1 oligomerisation on the polypurine sequence. Thus, depending on the cellular context ([ASF/SF2]/[hnRNP A1] ratio), AUA(GAA)3 will activate or repress site A7 utilisation and can thus be considered as a Janus splicing regulator.


Assuntos
Produtos do Gene rev/genética , Produtos do Gene tat/genética , HIV-1/genética , Ribonucleoproteínas Nucleares Heterogêneas Grupo A-B/metabolismo , RNA Mensageiro/biossíntese , RNA Viral/biossíntese , Processamento Alternativo , Sequência de Bases , Sítios de Ligação , Ensaio de Desvio de Mobilidade Eletroforética , Regulação Viral da Expressão Gênica , Células HeLa , Ribonucleoproteína Nuclear Heterogênea A1 , Humanos , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Conformação de Ácido Nucleico , Ligação Proteica , RNA Mensageiro/química , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Viral/química , RNA Viral/genética , RNA Viral/metabolismo , Elementos Silenciadores Transcricionais/genética , Transcrição Gênica , Produtos do Gene rev do Vírus da Imunodeficiência Humana , Produtos do Gene tat do Vírus da Imunodeficiência Humana
9.
RNA ; 12(10): 1868-82, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16931875

RESUMO

During ribosome biogenesis, the RNA precursor to mature rRNAs undergoes numerous post-transcriptional chemical modifications of bases, including conversions of uridines to pseudouridines. In archaea and eukaryotes, these conversions are performed by box H/ACA small ribonucleoprotein particles (box H/ACA RNPs), which contain a small guide RNA responsible for the selection of substrate uridines and four proteins, including the pseudouridine synthase, Cbf5p. So far, no in vitro reconstitution of eukaryotic box H/ACA RNPs from purified components has been achieved, principally due to difficulties in purifying recombinant eukaryotic Cbf5p. In this study, we present the purification of a truncated derivative of yeast Cbf5p (Cbf5(Delta)p) that retains the highly conserved TRUB and PUA domains. We have used band retardation assays to show that Cbf5(Delta)p on its own binds to box H/ACA small nucleolar (sno)RNAs. We demonstrate that the conserved H and ACA boxes enhance the affinity of the protein for the snoRNA. Furthermore, like its archaeal homologs, Cbf5(Delta)p can bind to a single stem-loop-box ACA RNA. Finally, we report the first enzymatic footprinting analysis of a Cbf5-RNA complex. Our results are compatible with the view that two molecules of Cbf5p interact with a binding platform constituted by the 5' end of the RNA, the single-stranded hinge domain containing the conserved H box, and the 3' end of the molecule, including the conserved ACA box.


Assuntos
Hidroliases/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , RNA Fúngico/metabolismo , RNA Nucleolar Pequeno/metabolismo , Ribonucleoproteínas Nucleares Pequenas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Sequência de Aminoácidos , Sequência de Bases , Sítios de Ligação/genética , Sequência Conservada , Hidroliases/química , Hidroliases/genética , Proteínas Associadas aos Microtúbulos/química , Proteínas Associadas aos Microtúbulos/genética , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Ligação Proteica , Pegadas de Proteínas , Estrutura Terciária de Proteína , RNA Fúngico/química , RNA Fúngico/genética , RNA Nucleolar Pequeno/química , RNA Nucleolar Pequeno/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Ribonucleases , Ribonucleoproteínas Nucleares Pequenas/química , Ribonucleoproteínas Nucleares Pequenas/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Homologia de Sequência de Aminoácidos
10.
RNA ; 11(7): 1051-63, 2005 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15987815

RESUMO

We identified the first archaeal tRNA ribose 2'-O-methylase, aTrm56, belonging to the Cluster of Orthologous Groups (COG) 1303 that contains archaeal genes only. The corresponding protein exhibits a SPOUT S-adenosylmethionine (AdoMet)-dependent methyltransferase domain found in bacterial and yeast G18 tRNA 2'-O-methylases (SpoU, Trm3). We cloned the Pyrococcus abyssi PAB1040 gene belonging to this COG, expressed and purified the corresponding protein, and showed that in vitro, it specifically catalyzes the AdoMet-dependent 2'-O-ribose methylation of C at position 56 in tRNA transcripts. This tRNA methylation is present only in archaea, and the gene for this enzyme is present in all the archaeal genomes sequenced up to now, except in the crenarchaeon Pyrobaculum aerophilum. In this archaea, the C56 2'-O-methylation is provided by a C/D sRNP. Our work is the first demonstration that, within the same kingdom, two different mechanisms are used to modify the same nucleoside in tRNAs.


Assuntos
Citosina/metabolismo , RNA Arqueal/metabolismo , RNA Nucleolar Pequeno/metabolismo , RNA de Transferência/química , tRNA Metiltransferases/química , tRNA Metiltransferases/metabolismo , Sequência de Aminoácidos , Catálise , Clonagem Molecular , Sequência Consenso , Escherichia coli/genética , Genoma Arqueal , Glutationa Transferase/metabolismo , Cinética , Dados de Sequência Molecular , Peso Molecular , Fases de Leitura Aberta , Filogenia , Estrutura Secundária de Proteína , Pyrobaculum/genética , Pyrobaculum/metabolismo , Pyrococcus abyssi/enzimologia , Pyrococcus abyssi/genética , RNA Arqueal/química , RNA Arqueal/genética , RNA Nucleolar Pequeno/genética , RNA de Transferência/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos , Especificidade por Substrato , Temperatura , tRNA Metiltransferases/classificação , tRNA Metiltransferases/genética
11.
Mol Microbiol ; 57(5): 1265-87, 2005 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16102000

RESUMO

A gapA-pgk gene tandem coding the glyceraldehyde 3-phosphate dehydrogenase and 3-phosphoglycerate kinase, is most frequently found in bacteria. However, in Enterobacteriaceae, gapA is replaced by an epd open reading frame (ORF) coding an erythrose-4-phosphate dehydrogenase and an fbaA ORF coding the class II fructose-1,6-bisphosphate aldolase follows pgk. Although epd expression is very low in Escherichia coli, we show that, in the presence of glucose, the 3 epd, pgk and fbaA ORFs are efficiently cotranscribed from promoter epd P0. Conservation of promoter epd P0 is likely due to its important role in modulation of the metabolic flux during glycolysis and gluconeogenesis. As a consequence, we found that the epd translation initiation region and ORF have been adapted in order to limit epd translation and to create an efficient RNase E entry site. We also show that fbaA is cotranscribed with pgk, from promoter epd P0 or an internal pgk P1 promoter of the extended -10 class. The differential expression of pgk and fbaA also depends upon an RNase E segmentation process, leading to individual mRNAs with different stabilities. The secondary structures of the RNA regions containing the RNase E sites were experimentally determined which brings important information on the structural features of RNase E ectopic sites.


Assuntos
Aldeído Oxirredutases/genética , Proteínas de Escherichia coli/genética , Escherichia coli/enzimologia , Frutose-Bifosfato Aldolase/genética , Regulação Enzimológica da Expressão Gênica , Fosfoglicerato Quinase/genética , Aldeído Oxirredutases/biossíntese , Sequência de Bases , Sítios de Ligação/genética , Códon de Iniciação/genética , Sequência Conservada , Endorribonucleases/química , Escherichia coli/genética , Proteínas de Escherichia coli/biossíntese , Frutose-Bifosfato Aldolase/biossíntese , Regulação Bacteriana da Expressão Gênica , Glucose/farmacologia , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Fosfoglicerato Quinase/biossíntese , Regiões Promotoras Genéticas/genética , Biossíntese de Proteínas , Estabilidade de RNA/genética , RNA Mensageiro/análise , RNA Mensageiro/química , RNA Mensageiro/metabolismo , Ribossomos/genética , Ribossomos/metabolismo , Transcrição Gênica/efeitos dos fármacos
12.
J Biol Chem ; 277(26): 23137-42, 2002 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-11956214

RESUMO

U2 RNA is one of five small nuclear RNAs that participate in the majority of mRNA splicing. In addition to its role in mRNA splicing, the biosynthesis of U2 RNA and three of the other spliceosomal RNAs is itself an intriguing process involving nuclear export followed by 5'-cap hypermethylation, assembly with specific proteins, 3' end processing, and then nuclear import. Previous work has identified sequences near the 3' end of pre-U2 RNA that are required for accurate and efficient processing. In this study, we have investigated the structural basis of U2 RNA 3' end processing by chemical and enzymatic probing methods. Our results demonstrate that the 3' end of pre-U2 RNA is a minihelix with an estimated stabilization free energy of -6.9 kcal/mol. Parallel RNA structure mapping experiments with mutant pre-U2 RNAs revealed that the presence of this 3' minihelix is itself not required for in vitro 3'-processing of pre-U2 RNA, in support of earlier studies implicating internal regions of pre-U2 RNA. Other considerations raise the possibility that this distinctive structural motif at the 3' end of pre-U2 RNA plays a role in the cleavage of the precursor from its longer primary transcript or in its nucleocytoplasmic traffic.


Assuntos
Precursores de RNA/química , RNA Nuclear Pequeno/biossíntese , Spliceossomos/química , Sequência de Bases , Humanos , Dados de Sequência Molecular
13.
RNA ; 10(9): 1388-98, 2004 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-15317975

RESUMO

Control of Rous sarcoma virus RNA splicing depends in part on the interaction of U1 and U11 snRNPs with an intronic RNA element called the negative regulator of splicing (NRS). A 23mer RNA hairpin (NRS23) of the NRS directly binds U1 and U11 snRNPs. Mutations that disrupt base-pairing between the loop of NRS23 and U1 snRNA abolish its negative control of splicing. We have determined the solution structure of NRS23 using NOEs, torsion angles, and residual dipolar couplings that were extracted from multidimensional heteronuclear NMR spectra. Our structure showed that the 6-bp stem of NRS23 adopts a nearly A-form duplex conformation. The loop, which consists of 11 residues according to secondary structure probing, was in a closed conformation. U913, the first residue in the loop, was bulged out or dynamic, and loop residues G914-C923, G915-U922, and U916-A921 were base-paired. The remaining UUGU tetraloop sequence did not adopt a stable structure and appears flexible in solution. This tetraloop differs from the well-known classes of tetraloops (GNRA, CUYG, UNCG) in terms of its stability, structure, and function. Deletion of the bulged U913, which is not complementary to U1 snRNA, increased the melting temperature of the RNA hairpin. This hyperstable hairpin exhibited a significant decrease in binding to U1 snRNP. Thus, the structure of the NRS RNA, as well as its sequence, is important for interaction with U1 snRNP and for splicing suppression.


Assuntos
Vírus do Sarcoma Aviário/genética , Conformação de Ácido Nucleico , Splicing de RNA , RNA Nuclear Pequeno/química , RNA Viral/química , RNA Viral/genética , Pareamento de Bases/genética , Sequência de Bases , Sítios de Ligação/genética , Humanos , Espectroscopia de Ressonância Magnética , Dados de Sequência Molecular , Mutação/genética , Retroviridae/genética , Ribonucleoproteína Nuclear Pequena U1/fisiologia , Ribonucleoproteínas Nucleares Pequenas/fisiologia , Soluções
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA