Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Analyst ; 148(9): 1930-1938, 2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-37066982

RESUMO

The creation of reagentless protein-based biosensors that are capable of monitoring molecular analytes directly in bodily fluids could revolutionize our understanding of biology and personalized health monitoring. The limited number of molecular sensors that are currently available in the market depends on the specific enzymatic or chemical reactivity of their target analytes and therefore are not applicable to many relevant biomarkers. Aiming to overcome this limited molecular sensing generality, a new class of reagentless protein-based electrochemical sensors has been introduced for the direct measurements of biomarkers in unprocessed biological fluids. This mini-review will discuss the most recent cutting-edge discoveries for the development of electroanalytical modular biosensors, where all the sensors' components are integrated into a self-sufficient sensor allowing hence its autonomous functionality.


Assuntos
Técnicas Biossensoriais , Técnicas Eletroquímicas , Proteínas , Biomarcadores
2.
Analyst ; 149(1): 63-75, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-37933547

RESUMO

Surface-enhanced Raman Spectroscopy (SERS) is a powerful optical sensing technique that amplifies the signal generated by Raman scattering by many orders of magnitude. Although the extreme sensitivity of SERS enables an extremely low limit of detection, even down to single molecule levels, it is also a primary limitation of the technique due to its tendency to equally amplify 'noise' generated by non-specifically adsorbed molecules at (or near) SERS-active interfaces. Eliminating interference noise is thus critically important to SERS biosensing and typically involves onerous extraction/purification/washing procedures and/or heavy dilution of biofluid samples. Consequently, direct analysis within biofluid samples or in vivo environments is practically impossible. In this study, an anti-fouling coating of recombinant human Lubricin (LUB) was self-assembled onto AuNP-modified glass slides via a simple drop-casting method. A series of Raman spectra were collected using rhodamine 6G (R6G) as a model analyte, which was spiked into NaCl solution or unprocessed whole blood. Likewise, we demonstrate the same sensing system for the quantitative detection of L-cysteine spiked in undiluted milk. It was demonstrated for the first time that LUB coating can mitigate the deleterious effect of fouling in a SERS sensor without compromising the detection of a target analyte, even in a highly fouling, complex medium like whole blood or milk. This feat is achieved through a molecular sieving property of LUB that separates small analytes from large fouling species directly at the sensing interface resulting in SERS spectra with low background (i.e., noise) levels and excellent analyte spectral fidelity. These findings indicate the great potential for using LUB coatings together with an analyte-selective layer to form a hierarchical separation system for SERS sensing of relevant analytes directly in complex biological media, aquaculture, food matrix or environmental samples.


Assuntos
Incrustação Biológica , Técnicas Biossensoriais , Humanos , Análise Espectral Raman/métodos , Técnicas Biossensoriais/métodos , Incrustação Biológica/prevenção & controle , Glicoproteínas
3.
Langmuir ; 38(18): 5351-5360, 2022 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-35465662

RESUMO

There are numerous biomedical applications where the interfacial shearing of surfaces can cause wear and friction, which can lead to a variety of medical complications such as inflammation, irritation, and even bacterial infection. We introduce a novel nanomaterial additive comprised of two-dimensional graphene oxide nanosheets (2D-NSCs) coated with lubricin (LUB) to reduce the amount of tribological stress in biomedical settings, particularly at low shear rates where boundary lubrication dominates. LUB is a glycoprotein found in the articular joints of mammals and has recently been discovered as an ocular surface boundary lubricant. The ability of LUB to self-assemble into a "telechelic" brush layer on a variety of surfaces was exploited here to coat the top and bottom surfaces of the ultrathin 2D-NSCs in solution, effectively creating a biopolymer-coated nanosheet. A reduction in friction of almost an order of magnitude was measured at a bioinspired interface. This reduction was maintained after repeated washing (5×), suggesting that the large aspect ratio of the 2D-NSCs facilitates effective lubrication even at diluted concentrations. Importantly, and unlike LUB-only treatment, the lubrication effect can be eliminated over 15 rinsing cycles, suggesting that the LUB-coated 2D-NSCs do not exhibit any binding interactions with the shearing surfaces. The effective lubricating properties of the 2D-NSCs combined with full reversibility through rinsing make the LUB-coated 2D-NSCs an intriguing candidate as a lubricant for biomedical applications.


Assuntos
Glicoproteínas , Lubrificantes , Animais , Fricção , Glicoproteínas/química , Grafite , Lubrificação , Mamíferos
4.
Chemistry ; 27(2): 669-682, 2021 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-32700787

RESUMO

Carbon-based symmetric supercapacitors (SCs) are known for their high power density and long cyclability, making them an ideal candidate for power sources in new-generation electronic devices. To boost their electrochemical performances, deriving activated carbon doped with heteroatoms such as N, O, and S are highly desirable for increasing the specific capacitance. In this regard, activated carbon (AC) self-doped with heteroatoms is directly derived from bio-waste (lima-bean shell) using different KOH activation processes. The heteroatom-enriched AC synthesized using a pretreated carbon-to-KOH ratio of 1:2 (ONS@AC-2) shows excellent surface morphology with a large surface area of 1508 m2 g-1 . As an SC electrode material, the presence of heteroatoms (N and S) reduces the interfacial charge-transfer resistance and increases the ion-accessible surface area, which inherently provides additional pseudocapacitance. The ONS@AC-2 electrode attains a maximum specific capacitance (Csp ) of 342 F g-1 at a specific current of 1 Ag-1 in 1 m NaClO4 electrolyte at the wide potential window of 1.8 V. Moreover, as symmetric SCs the ONS@AC-2 electrode delivers a maximum specific capacitance (Csc ) of 191 F g-1 with a maximum specific energy of 21.48 Wh kg-1 and high specific power of 14 000 W kg-1 and excellent retention of its initial capacitance (98 %) even after 10000 charge/discharge cycles. In addition, a flexible supercapacitor fabricated utilizing ONS@AC-2 electrodes and a LiCl/polyvinyl alcohol (PVA)-based polymer electrolyte shows a maximum Csc of 119 F g-1 with considerable specific energy and power.

5.
Langmuir ; 37(37): 11188-11193, 2021 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-34506141

RESUMO

Self-assembled lubricin (LUB) monolayers are an effective antiadhesive coating for biomedical applications. Long deposition times and limited control over the monolayer grafting density remain impediments to commercialization and applications in advanced sensor technologies. This work describes a novel potential pulse-facilitated coating method that reduces coating times to mere seconds while also providing high-level control over the achieved grafting density. This is the first time that the potential pulse-facilitated method is applied for direct assembling of a large and complex polyelectrolyte.


Assuntos
Glicoproteínas , Polímeros , Adsorção , Polieletrólitos
6.
Langmuir ; 35(48): 15834-15848, 2019 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-31355643

RESUMO

Lubricin (LUB, aka PRG4), a mucin-like glycoprotein, is best known for the significant role it plays in the boundary lubrication, wear protection, and adhesion control systems in human joints. However, LUB exhibits a number of diverse and useful properties, including a remarkable ability to self-assemble into a telechelic brush structure onto virtually any substrate. This self-assembly behavior has spawned the emergence of numerous nontraditional applications of LUB coatings in numerous areas such as microfluidics, electrochemical sensors, contact lenses, antifouling surfaces, and bionic neural interfaces. Although LUB will readily self-assemble on most substrates, it has become apparent that the substrate has a significant influence on the LUB layer's demonstrated lubrication, antiadhesion, electrokinetic, and size-selective transport properties; however, investigations into LUB-substrate interactions and how they influence the self-assembled LUB layer structure remain a neglected aspect of LUB research. This study utilizes AFM force spectroscopy to directly assess the adhesion energy of LUB molecules adsorbed to a wide variety of different substrates which include inorganic, polymeric, and metallic materials. An analysis of the steric repulsive forces measured on approach provides a qualitative assessment of the LUB layer's mechanical modulus, related to the chain packing density, across substrates. These modulus measurements, combined with characteristic features and the dwell time dependence of the LUB adhesion forces provide insight into the organization and uniformity of the LUB brush structure. The results of these measurements indicate that LUB interactions with different substrates are highly variable and substrate-specific, resulting in a surprisingly broad spectrum of adhesion energies and layer properties (i.e., chain density, uniformity, etc.) which are not, themselves, correlated or easily predicted by substrate properties. In addition, this study finds exceptionally poor LUB adhesion to both mica and poly(methyl methacrylate) surfaces that remain widely used substrates for constructing model surfaces in fundamental tribology studies which may have significant implications for the findings of a number of foundational studies into LUB tribology and molecular synergies.

7.
Soft Matter ; 15(18): 3779-3787, 2019 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-30989161

RESUMO

Controlling the release of bioactive agents has important potential applications in tissue engineering. While microspheres have been investigated to manipulate release rates, the majority of these investigations have been based on delivery into aqueous media, whereas the cellular environment in tissue engineering is more typically a hydrogel scaffold. If drug-loaded microspheres are introduced within scaffolds to deliver biologically active substances in situ, it is crucial to understand how the release rate is influenced by interactions between the microspheres and the scaffold. Here, we report the fabrication and characterization of a biodegradable scaffold that contains composite microspheres and is suitable for biological applications. Our approach evaluates the influence on the release profile of a model drug (FITC-dextran sulfate) from alginate and PCL-alginate microspheres within a hydrogel construct forming a secondary encapsulation. Increasing the degree of crosslinking in the secondary encapsulation matrix led to a slower cumulative release from 36% to 15%, from the alginate microspheres, whereas a decrease from 26% to 6% was observed for the PCL-alginate microspheres. These results suggest that the release of bioactive molecules can be fine tuned by independently engineering the properties of the scaffold and microspheres.

8.
Langmuir ; 34(40): 12137-12144, 2018 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-30216073

RESUMO

Carbon nanotubes (CNTs) have attracted significant attention because of their outstanding physical and chemical properties, and yet, their high natural tendency to form bundles, ropes, or aggregates, as a consequence of their strong π-π interactions, limits their solvent processing and further applications. Efficient processing solvents, mostly amide-based, that partially compensate for these strong inter-CNT π-π interactions have been widely reported. However, the yield of debundled/dispersed CNTs and the stability of subsequent dispersions in these solvents remain key challenges. Moreover, there are major concerns related to the large-scale use of conventional solvents, as they are fossil fuel based and intrinsically highly toxic, hence the need to identify environmentally friendly and safer alternatives. Herein, we address these challenges by using a ternary system composed of multiwalled CNTs (MWCNTs), tailored electron-deficient acceptors, and an organic solvent. Not only do the electron-deficient acceptors interrupt the inter-CNTs π-π interactions, thereby enabling the subsequent debundling and dispersion of MWCNTs aggregates in the solvent, they also act as stabilizers, after dispersion, by inhibiting inter-CNT π-π interactions and re-agglomeration. The use of electron acceptors increases the yield by a factor of 165 in N-methyl 2-pyrrolidone, improves the long-term stability of the debundled and dispersed MWCNTs, and reduces the energy input to only 30 min of mild bath sonication, compared with prolonged high-energy sonication reported in the literature. We also report for the first time, the use in MWCNT processing of a "green" biosolvent, dihydrolevoglucosenone, as an environmentally friendly and nontoxic alternative to the more conventional amide-based solvents.

9.
Langmuir ; 34(14): 4210-4216, 2018 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-29553744

RESUMO

Herein, we present the synthesis of linear photochromic norbornene polymers bearing spiropyran side groups (poly(SP-R)) and their assembly into layer-by-layer (LbL) films on glass substrates when converted to poly(MC-R) under UV irradiation. The LbL films were composed of bilayers of poly(allylamine hydrochloride) (PAH) and poly(MC-R), forming (PAH/poly(MC-R)) n coatings. The merocyanine (MC) form presents a significant absorption band in the visible spectral region, which allowed tracking of the LbL deposition process by UV-vis spectroscopy, which showed a linear increase of the characteristic MC absorbance band with increasing number of bilayers. The thickness and morphology of the (PAH/poly(MC-R)) n films were characterized by ellipsometry and scanning electron microscopy, respectively, with a height of ∼27.5 nm for the first bilayer and an overall height of ∼165 nm for the (PAH/poly(MC-R))5 multilayer film. Prolonged white light irradiation (22 h) resulted in a gradual decrease of the MC band by 90.4 ± 2.9% relative to the baseline, indicating the potential application of these films as coatings for photocontrolled delivery systems.

10.
Pancreatology ; 17(5): 795-804, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28619283

RESUMO

BACKGROUND/OBJECTIVES: There has been minimal improvement in the prognosis of pancreatic cancer cases in the past 3 decades highlighting the crucial need for more effective therapeutic approaches. A drug delivery system capable of locally delivering high concentrations of chemotherapeutics directly at the site of the tumor is clearly required. The aim of this study was to fabricate and characterize the biophysical properties of gemcitabine-eluting wet-spun polymeric fibers for localized drug delivery applications. METHODS/RESULTS: Fibers spun from alginate or chitosan solutions with or without the anticancer drug gemcitabine had a uniform surface area, were internally homogeneous and ranged from 50-120 µm in diameter. Drug encapsulation ranged from 13-52%, depending on the type and concentration of polymer used. Gemcitabine displayed first-order release kinetics where 64-82% of the loaded drug was rapidly released within the first 10 h followed by a sustained release over the next 134 h. A time dependent inhibition of ex vivo tumor spheroid growth and cell viability was observed after incubation with gemcitabine-loaded fibers but not control fibers. CONCLUSION: With further development these studies could lead to the manufacture of a safe and effective delivery system designed to combat non-resectable pancreatic cancer for which currently there is minimal chance of cure.


Assuntos
Antimetabólitos Antineoplásicos/química , Antimetabólitos Antineoplásicos/farmacologia , Desoxicitidina/análogos & derivados , Adenocarcinoma/tratamento farmacológico , Alginatos , Antineoplásicos/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Desoxicitidina/administração & dosagem , Desoxicitidina/química , Desoxicitidina/farmacologia , Sistemas de Liberação de Medicamentos , Feminino , Ácido Glucurônico , Ácidos Hexurônicos , Humanos , Neoplasias Pancreáticas/tratamento farmacológico , Polímeros/química , Gencitabina
11.
Small ; 10(18): 3717-28, 2014 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-24861023

RESUMO

The controlled deposition of attolitre volumes of liquids may engender novel applications such as soft, nano-tailored cell-material interfaces, multi-plexed nano-arrays for high throughput screening of biomolecular interactions, and localized delivery of reagents to reactions confined at the nano-scale. Although the deposition of small organic molecules from an AFM tip, known as dip-pen nanolithography (DPN), is being continually refined, AFM deposition of liquid inks is not well understood, and is often fraught with inconsistent deposition rates. In this work, the variation in feature-size over long term printing experiments for four model inks of varying viscosity is examined. A hierarchy of recurring phenomena is uncovered and there are attributed to ink movement and reorganisation along the cantilever itself. Simple analytical approaches to model these effects, as well as a method to gauge the degree of ink loading using the cantilever resonance frequency, are described. In light of the conclusions, the various parameters which need to be controlled in order to achieve uniform printing are dicussed. This work has implications for the nanopatterning of viscous liquids and hydrogels, encompassing ink development, the design of probes and printing protocols.

12.
Langmuir ; 30(10): 2712-21, 2014 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-24548246

RESUMO

The controlled deposition of attoliter volumes of liquid inks may engender novel applications such as targeted drug delivery to single cells and localized delivery of chemical reagents at nanoscale dimensions. Although the deposition of small organic molecules from an atomic force microscope tip, known as dip-pen nanolithography (DPN), has been extensively studied, the deposition of liquid inks is little understood. In this work, we have used a set of model ink-substrate systems to develop an understanding of the deposition of viscous liquids using an unmodified AFM tip. First, the growth of dot size with increasing dwell time is characterized. The dynamics of deposition are found to vary for different ink-substrate systems, and the change in deposition rate over the course of an experiment limits our ability to quantify the ink-transfer dynamics in terms of liquid properties and substrate wettability. We find that the most critical parameter affecting the deposition rate is the volume of ink on the cantilever, an effect resulting in a 10-fold decrease in deposition rate (aL/s) over 2 h of printing time. We suggest that a driving force for deposition arises from the gradient in Laplace pressure set up when the tip touches the substrate. Second, the forces acting upon the AFM cantilever during ink deposition were measured in order to gain insight into the underlying ink-transfer mechanism. The force curve data and simple geometrical arguments were used to elucidate the shape of the ink meniscus at the instant of deposition, a methodology that may be used as an accurate and real-time means of monitoring the volume of deposited dots. Taken together, our results illustrate that liquid deposition involves a very different transfer mechanism than traditionally ascribed to DPN molecular transport.

13.
Langmuir ; 30(11): 3264-73, 2014 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-24571209

RESUMO

New insights into electrochemical kinetics of the flavin adenine dinucleotide (FAD) redox center of glucose-oxidase (GlcOx) immobilized on reduced graphene oxide (rGO), single- and multiwalled carbon nanotubes (SW and MWCNT), and combinations of rGO and CNTs have been gained by application of Fourier transformed AC voltammetry (FTACV) and simulations based on a range of models. A satisfactory level of agreement between experiment and theory, and hence establishment of the best model to describe the redox chemistry of FAD, was achieved with the aid of automated e-science tools. Although still not perfect, use of Marcus theory with a very low reorganization energy (≤0.3 eV) best mimics the experimental FTACV data, which suggests that the process is gated as also deduced from analysis of FTACV data obtained at different frequencies. Failure of the simplest models to fully describe the electrode kinetics of the redox center of GlcOx, including those based on the widely employed Laviron theory is demonstrated, as is substantial kinetic heterogeneity of FAD species. Use of a SWCNT support amplifies the kinetic heterogeneity, while a combination of rGO and MWCNT provides a more favorable environment for fast communication between FAD and the electrode.


Assuntos
Carbono/química , Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo , Flavina-Adenina Dinucleotídeo/metabolismo , Glucose Oxidase/química , Glucose Oxidase/metabolismo , Aspergillus niger/enzimologia , Eletroquímica , Eletrodos , Flavina-Adenina Dinucleotídeo/química , Cinética , Oxirredução
14.
Colloids Surf B Biointerfaces ; 234: 113741, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38184943

RESUMO

Cartilage demineralisation in Osteoarthritis (OA) patients can elevate calcium ion levels in synovial fluid, as evidenced by the prevalence of precipitated calcium phosphate crystals in OA synovial fluid. Although it has been reported that there is a potential connection between elevated concentrations of calcium ions and a deterioration in the lubrication and wear resistance of cartilage tissues, the mechanism behind the strong link between calcium ion concentration and decreased lubrication performance is unclear. In this work, the AFM friction, imaging, and normal force distance measurements were used to investigate the lubrication performances of hyaluronic acid (HA), Lubricin (LUB), and HA-LUB complex in the presence of calcium ions (5 mM, 15 mM, and 30 mM), to understand the possible mechanism behind the change of lubrication property. The results of AFM friction measurements suggest that introducing calcium ions to the environment effectively eliminated the lubrication ability of HA and HA-LUB, especially with relatively low loading applied. The AFM images indicate that it is unlikely that structural or morphological changes in the surface-bound layer upon calcium ions addition are primarily responsible for the friction results demonstrated. Further, the poor correlation between the effect of calcium ions on the adhesion forces and its impact on friction suggests that the decrease in the lubricating ability of both layers is likely a result of changes in the hydration of the HA-LUB surface bound layers than changes in intermolecular or intramolecular binding. This work provides the first experimental evidence lending towards the relationship between bone demineralisation and articular cartilage degradation at the onset of OA and the mechanism through which elevated calcium levels in the synovial fluid act on joint lubrication.


Assuntos
Cartilagem Articular , Glicoproteínas , Osteoartrite , Humanos , Lubrificação , Ácido Hialurônico/química , Cálcio/metabolismo , Cartilagem Articular/metabolismo , Fricção , Líquido Sinovial/química
15.
ACS Appl Bio Mater ; 7(6): 4175-4192, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38830774

RESUMO

Nerve growth factor (NGF) plays a crucial role in cellular growth and neurodifferentiation. To achieve significant neuronal regeneration and repair using in vitro NGF delivery, spatiotemporal control that follows the natural neuronal processes must be developed. Notably, a challenge hindering this is the uncontrolled burst release from the growth factor delivery systems. The rapid depletion of NGF reduces treatment efficacy, leading to poor cellular response. To address this, we developed a highly controllable system using graphene oxygen (GO) and GelMA hydrogels modulated by electrical stimulation. Our system showed superior control over the release kinetics, reducing the burst up 30-fold. We demonstrate that the system is also able to sequester and retain NGF up to 10-times more efficiently than GelMA hydrogels alone. Our controlled release system enabled neurodifferentiation, as revealed by gene expression and immunostaining analysis. The increased retention and reduced burst release from our system show a promising pathway for nerve tissue engineering research toward effective regeneration.


Assuntos
Materiais Biocompatíveis , Estimulação Elétrica , Grafite , Hidrogéis , Fator de Crescimento Neural , Regeneração Nervosa , Hidrogéis/química , Hidrogéis/farmacologia , Grafite/química , Grafite/farmacologia , Regeneração Nervosa/efeitos dos fármacos , Fator de Crescimento Neural/farmacologia , Fator de Crescimento Neural/metabolismo , Fator de Crescimento Neural/química , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Animais , Tamanho da Partícula , Teste de Materiais , Ratos , Células PC12 , Engenharia Tecidual
16.
ACS Biomater Sci Eng ; 10(6): 3775-3791, 2024 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-38722625

RESUMO

This study investigates the electrochemical behavior of GelMA-based hydrogels and their interactions with PC12 neural cells under electrical stimulation in the presence of conducting substrates. Focusing on indium tin oxide (ITO), platinum, and gold mylar substrates supporting conductive scaffolds composed of hydrogel, graphene oxide, and gold nanorods, we explored how the substrate materials affect scaffold conductivity and cell viability. We examined the impact of an optimized electrical stimulation protocol on the PC12 cell viability. According to our findings, substrate selection significantly influences conductive hydrogel behavior, affecting cell viability and proliferation as a result. In particular, the ITO substrates were found to provide the best support for cell viability with an average of at least three times higher metabolic activity compared to platinum and gold mylar substrates over a 7 day stimulation period. The study offers new insights into substrate selection as a platform for neural cell stimulation and underscores the critical role of substrate materials in optimizing the efficacy of neural interfaces for biomedical applications. In addition to extending existing work, this study provides a robust platform for future explorations aimed at tailoring the full potential of tissue-engineered neural interfaces.


Assuntos
Sobrevivência Celular , Hidrogéis , Neurônios , Compostos de Estanho , Engenharia Tecidual , Alicerces Teciduais , Animais , Engenharia Tecidual/métodos , Células PC12 , Ratos , Compostos de Estanho/química , Compostos de Estanho/farmacologia , Hidrogéis/química , Alicerces Teciduais/química , Neurônios/fisiologia , Neurônios/citologia , Ouro/química , Ouro/farmacologia , Grafite/química , Grafite/farmacologia , Platina/química , Estimulação Elétrica , Nanotubos/química , Proliferação de Células
17.
Nat Commun ; 15(1): 4361, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38778053

RESUMO

Oxygen plays a crucial role in human embryogenesis, homeostasis, and tissue regeneration. Emerging engineered regenerative solutions call for novel oxygen delivery systems. To become a reality, these systems must consider physiological processes, oxygen release mechanisms and the target application. In this review, we explore the biological relevance of oxygen at both a cellular and tissue level, and the importance of its controlled delivery via engineered biomaterials and devices. Recent advances and upcoming trends in the field are also discussed with a focus on tissue-engineered constructs that could meet metabolic demands to facilitate regeneration.


Assuntos
Oxigênio , Regeneração , Engenharia Tecidual , Humanos , Oxigênio/metabolismo , Engenharia Tecidual/métodos , Regeneração/fisiologia , Animais , Materiais Biocompatíveis/química
18.
Langmuir ; 29(32): 10247-53, 2013 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-23848357

RESUMO

This work reports an experimental study of the kinetics and mechanisms of gelation of carbon nanotubes (CNTs)-hyaluronic acid (HA) mixtures. These materials are of great interest as functional biogels for future medical applications and tissue engineering. We show that CNTs can induce the gelation of noncovalently modified HA in water. This gelation is associated with a dynamical arrest of a liquid crystal phase separation, as shown by small-angle light scattering and polarized optical microscopy. This phenomenon is reminiscent of arrested phase separations in other colloidal systems in the presence of attractive interactions. The gelation time is found to strongly vary with the concentrations of both HA and CNTs. Near-infrared photoluminescence reveals that the CNTs remain individualized both in fluid and in gel states. It is concluded that the attractive forces interplay are likely weak depletion interactions and not strong van der Waals interactions which could promote CNT rebundling, as observed in other biopolymer-CNT mixtures. The present results clarify the remarkable efficiency of CNT at inducing the gelation of HA, by considering that CNTs easily phase separate as liquid crystals because of their giant aspect ratio.


Assuntos
Ácido Hialurônico/química , Nanotubos de Carbono/química , Géis/síntese química , Géis/química , Humanos , Cinética
19.
Antibiotics (Basel) ; 12(9)2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37760755

RESUMO

The threat to public health resulting from the emergence of antimicrobial resistance (AMR) is ever rising. One of the major bacterial pathogens at the forefront of this problem is methicillin-resistant Staphylococcus aureus, or MRSA, for which there is a great need to find alternative treatments. One of the most promising alternatives is endophytic fungi, which were shown to produce a vast array of bioactive compounds, including many novel antibacterial compounds. In this study, two endophytic Alternaria sp., EL 24 and EL 35, were identified from the leaves of Eremophila longifolia. Ethyl acetate (EtOAc) extracts of their culture filtrates were found to inhibit both methicillin-sensitive S. aureus ATCC 25923 and MRSA strains M173525 and M180920. The activity of each extract was shown to be greatly affected by the growth medium, with considerable reductions in minimum inhibitory concentrations (MICs) and minimum bactericidal concentrations (MBCs) observed when tested in tryptic soy broth with glucose (TSBG) compared with Mueller-Hinton broth (MHB). Both extracts displayed significant (p ≤ 0.05) antibiofilm activity against all three S. aureus strains, the greatest of which was that of EL 35, which reduced biofilm formation by M180920 by 72%, while that of EL 24 resulted in a 57% reduction against ATCC 25923. Both extracts also disrupted established biofilms, of which the most effective was EL 35, which reduced the M180920 biofilm by 64%, while EL 24 also performed best against M180920, reducing biofilm by 54%. Gas chromatography-mass spectrometry (GC-MS) analysis of the EL 24 EtOAc extract revealed five known compounds. This study highlights the promise of endophytic fungi from Australian plants as a potential source of substances effective against important bacterial pathogens. Further understanding of the responsible compounds and their mechanisms could lead to the development of treatments effective against MRSA, as well as novel biofilm-resistant biomedical materials, contributing towards reducing the burden of AMR.

20.
J Mater Chem B ; 11(3): 581-593, 2023 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-36533419

RESUMO

The development of electroactive cell-laden hydrogels (bioscaffolds) has gained interest in neural tissue engineering research due to their inherent electrical properties that can induce the regulation of cell behaviour. Hydrogels combined with electrically conducting materials can respond to external applied electric fields, where these stimuli can promote electro-responsive cell growth and proliferation. A successful neural interface for electrical stimulation should present the desired stable electrical properties, such as high conductivity, low impedance, increased charge storage capacity and similar mechanical properties related to a target neural tissue. We report how different electrical stimulation protocols can impact neuronal cells' survival and proliferation when using cell-laden GelMA/GO hydrogels. The rat pheochromocytoma cell line, PC12s encapsulated into hydrogels showed an increased proliferation behaviour with increasing current amplitudes applied. Furthermore, the presence of GO in GelMA hydrogels enhanced the metabolic activity and DNA content of PC12s compared with GelMA alone. Similarly, hydrogels provided survival of encapsulated cells at higher current amplitudes when compared to cells seeded onto ITO flat surfaces, which expressed significant cell death at a current amplitude of 2.50 mA. Our findings provide new rational choices for electroactive hydrogels and electrical stimulation with broad potential applications in neural tissue engineering research.


Assuntos
Hidrogéis , Alicerces Teciduais , Ratos , Animais , Hidrogéis/farmacologia , Sobrevivência Celular , Estimulação Elétrica , Proliferação de Células
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA