Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(13)2023 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-37447729

RESUMO

The template matching technique is one of the most applied methods to find patterns in images, in which a reduced-size image, called a target, is searched within another image that represents the overall environment. In this work, template matching is used via a co-design system. A hardware coprocessor is designed for the computationally demanding step of template matching, which is the calculation of the normalized cross-correlation coefficient. This computation allows invariance in the global brightness changes in the images, but it is computationally more expensive when using images of larger dimensions, or even sets of images. Furthermore, we investigate the performance of six different swarm intelligence techniques aiming to accelerate the target search process. To evaluate the proposed design, the processing time, the number of iterations, and the success rate were compared. The results show that it is possible to obtain approaches capable of processing video images at 30 frames per second with an acceptable average success rate for detecting the tracked target. The search strategies based on PSO, ABC, FFA, and CS are able to meet the processing time of 30 frame/s, yielding average accuracy rates above 80% for the pipelined co-design implementation. However, FWA, EHO, and BFOA could not achieve the required timing restriction, and they achieved an acceptance rate around 60%. Among all the investigated search strategies, the PSO provides the best performance, yielding an average processing time of 16.22 ms coupled with a 95% success rate.


Assuntos
Algoritmos , Inteligência Artificial , Inteligência
2.
Biomimetics (Basel) ; 8(5)2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37754139

RESUMO

Open or short-circuit faults, as well as discrete parameter faults, are the most commonly used models in the simulation prior to testing methodology. However, since analog circuits exhibit continuous responses to input signals, faults in specific circuit elements may not fully capture all potential component faults. Consequently, diagnosing faults in analog circuits requires three key aspects: identifying faulty components, determining faulty element values, and considering circuit tolerance constraints. To tackle this problem, a methodology is proposed and implemented for fault diagnosis using swarm intelligence. The investigated optimization techniques are Particle Swarm Optimization (PSO) and the Bat Algorithm (BA). In this methodology, the nonlinear equations of the tested circuit are employed to calculate its parameters. The primary objective is to identify the specific circuit component that could potentially exhibit the fault by comparing the responses obtained from the actual circuit and the responses obtained through the optimization process. Two circuits are used as case studies to evaluate the performance of the proposed methodologies: the Tow-Thomas Biquad filter (case study 1) and the Butterworth filter (case study 2). The proposed methodologies are able to identify or at least reduce the number of possible faulty components. Four main performance metrics are extracted: accuracy, precision, sensitivity, and specificity. The BA technique demonstrates superior performance by utilizing the maximum combination of accessible nodes in the tested circuit, with an average accuracy of 95.5%, while PSO achieved only 93.9%. Additionally, the BA technique outperforms in terms of execution time, with an average time reduction of 7.95% reduction for the faultless circuit and an 8.12% reduction for the faulty cases. Compared to the machine-learning-based approach, using BA with the proposed methodology achieves similar accuracy rates but does not require any datasets nor any time-demanding training to proceed with circuit diagnostic.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA