Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(6): e2309457121, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38289949

RESUMO

Relating the macroscopic properties of protein-based materials to their underlying component microstructure is an outstanding challenge. Here, we exploit computational design to specify the size, flexibility, and valency of de novo protein building blocks, as well as the interaction dynamics between them, to investigate how molecular parameters govern the macroscopic viscoelasticity of the resultant protein hydrogels. We construct gel systems from pairs of symmetric protein homo-oligomers, each comprising 2, 5, 24, or 120 individual protein components, that are crosslinked either physically or covalently into idealized step-growth biopolymer networks. Through rheological assessment, we find that the covalent linkage of multifunctional precursors yields hydrogels whose viscoelasticity depends on the crosslink length between the constituent building blocks. In contrast, reversibly crosslinking the homo-oligomeric components with a computationally designed heterodimer results in viscoelastic biomaterials exhibiting fluid-like properties under rest and low shear, but solid-like behavior at higher frequencies. Exploiting the unique genetic encodability of these materials, we demonstrate the assembly of protein networks within living mammalian cells and show via fluorescence recovery after photobleaching (FRAP) that mechanical properties can be tuned intracellularly in a manner similar to formulations formed extracellularly. We anticipate that the ability to modularly construct and systematically program the viscoelastic properties of designer protein-based materials could have broad utility in biomedicine, with applications in tissue engineering, therapeutic delivery, and synthetic biology.


Assuntos
Materiais Biocompatíveis , Hidrogéis , Animais , Hidrogéis/química , Biopolímeros , Mamíferos
2.
Bioconjug Chem ; 29(2): 445-450, 2018 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-29298051

RESUMO

We present here an integrated nanotechnology/biology strategy for cancer immunotherapy that uses arginine nanoparticles (ArgNPs) to deliver CRISPR-Cas9 gene editing machinery into cells to generate SIRP-α knockout macrophages. The NP system efficiently codelivers single guide RNA (sgRNA) and Cas9 protein required for editing to knock out the "don't eat me signal" in macrophages that prevents phagocytosis of cancer cells. Turning off this signal increased the innate phagocytic capabilities of the macrophages by 4-fold. This improved attack and elimination of cancer cells makes this strategy promising for the creation of "weaponized" macrophages for cancer immunotherapy.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes/métodos , Macrófagos/metabolismo , Receptores Imunológicos/genética , Animais , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Técnicas de Inativação de Genes/métodos , Humanos , Imunoterapia/métodos , Macrófagos/imunologia , Camundongos , Nanomedicina/métodos , Neoplasias/imunologia , Neoplasias/terapia , Fagocitose , Células RAW 264.7 , Receptores Imunológicos/imunologia
3.
Nanomedicine ; 14(6): 1931-1939, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29778888

RESUMO

Cancer stem cells (CSCs) contribute to multidrug resistance, tumor recurrence and metastasis, making them prime therapeutic targets. Their ability to differentiate and lose stem cell properties makes them challenging to study. Currently, there is no simple assay that can quickly capture and trace the dynamic phenotypic changes on the CSC surface. Here, we report rapid discrimination of breast CSCs from non-CSCs using a nanoparticle-fluorescent-protein based sensor. This nanosensor was employed to discriminate CSCs from non-CSCs, as well as CSCs that had differentiated in vitro in two breast cancer models. Importantly, the sensor platform could also discriminate CSCs from the bulk population of cells in patient-derived xenografts of human breast cancer. Taken together, the results obtained demonstrate the feasibility of using the nanosensor to phenotype CSCs and monitor their fate. Furthermore, this approach provides a novel area for therapeutic interventions against these challenging targets.


Assuntos
Técnicas Biossensoriais , Proliferação de Células , Nanopartículas/química , Células-Tronco Neoplásicas/patologia , Neoplasias de Mama Triplo Negativas/patologia , Animais , Apoptose , Feminino , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Células-Tronco Neoplásicas/metabolismo , Fenótipo , Neoplasias de Mama Triplo Negativas/metabolismo , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
4.
J Am Chem Soc ; 139(23): 8008-8012, 2017 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-28535040

RESUMO

We report a nanosensor that uses cell lysates to rapidly profile the tumorigenicity of cancer cells. This sensing platform uses host-guest interactions between cucurbit[7]uril and the cationic headgroup of a gold nanoparticle to non-covalently modify the binding of three fluorescent proteins of a multi-channel sensor in situ. This approach doubles the number of output channels to six, providing single-well identification of cell lysates with 100% accuracy. Significantly, this classification could be extended beyond the training set, determining the invasiveness of novel cell lines. The unique fingerprint of these cell lysates required minimal sample quantity (200 ng, ∼1000 cells), making the methodology compatible with microbiopsy technology.


Assuntos
Técnicas Biossensoriais , Hidrocarbonetos Aromáticos com Pontes/química , Imidazóis/química , Proteínas Luminescentes/química , Nanopartículas Metálicas/química , Nanotecnologia , Neoplasias/patologia , Sítios de Ligação , Linhagem Celular Tumoral , Ouro/química , Humanos , Estrutura Molecular , Neoplasias/diagnóstico por imagem
5.
Bioconjug Chem ; 28(4): 880-884, 2017 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-28263568

RESUMO

The successful use of clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9-based gene editing for therapeutics requires efficient in vivo delivery of the CRISPR components. There are, however, major challenges on the delivery front. In this Topical Review, we will highlight recent developments in CRISPR delivery, and we will present hurdles that still need to be overcome to achieve effective in vivo editing.


Assuntos
Sistemas CRISPR-Cas , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Edição de Genes/métodos , Animais , Técnicas de Transferência de Genes , Terapia Genética/métodos , Vetores Genéticos/administração & dosagem , Vetores Genéticos/genética , Humanos , Mutagênese Insercional/métodos , Vírus/genética
6.
J Am Chem Soc ; 138(13): 4522-9, 2016 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-26967961

RESUMO

Supramolecular complexes of a family of positively charged conjugated polymers (CPs) and green fluorescent protein (GFP) create a fluorescence resonance energy transfer (FRET)-based ratiometric biosensor array. Selective multivalent interactions of the CPs with mammalian cell surfaces caused differential change in FRET signals, providing a fingerprint signature for each cell type. The resulting fluorescence signatures allowed the identification of 16 different cell types and discrimination between healthy, cancerous, and metastatic cells, with the same genetic background. While the CP-GFP sensor array completely differentiated between the cell types, only partial classification was achieved for the CPs alone, validating the effectiveness of the ratiometric sensor. The utility of the biosensor was further demonstrated in the detection of blinded unknown samples, where 121 of 128 samples were correctly identified. Notably, this selectivity-based sensor stratified diverse cell types in minutes, using only 2000 cells, without requiring specific biomarkers or cell labeling.


Assuntos
Fluorescência , Proteínas de Fluorescência Verde/química , Polímeros/química , Animais , Técnicas Biossensoriais/métodos , Transferência Ressonante de Energia de Fluorescência/métodos , Humanos , Camundongos , Modelos Químicos
7.
Bioconjug Chem ; 26(5): 950-4, 2015 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-25894332

RESUMO

Combination therapy employing proteins and small molecules provides access to synergistic treatment strategies. Co-delivery of these two payloads is challenging due to the divergent physicochemical properties of small molecule and protein cargos. Nanoparticle-stabilized nanocapsules (NPSCs) are promising for combination treatment strategies since they have the potential to deliver small molecule drugs and proteins simultaneously into the cytosol. In this study, we loaded paclitaxel into the hydrophobic core of the NPSC and self-assembled caspase-3 and nanoparticles on the capsule surface. The resulting combination NPSCs showed higher cytotoxicity than either of the single agent NPSCs, with synergistic action established using combination index values.


Assuntos
Caspase 3/química , Nanocápsulas/química , Paclitaxel/química , Caspase 3/farmacologia , Morte Celular/efeitos dos fármacos , Estabilidade de Medicamentos , Sinergismo Farmacológico , Células HeLa , Humanos , Interações Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Conformação Molecular , Paclitaxel/farmacologia
8.
Macromol Rapid Commun ; 36(7): 678-683, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25737273

RESUMO

A facile method is developed to functionalize nanofiber surfaces with nanoparticles (NPs) through dithiocarbamate chemistry. Gold nanoparticles (AuNPs) and quantum dots (QDs) are immobilized on the nanofiber surface. These surfaces provide scaffolds for further supramolecular functionalization, as demonstrated through the Förster resonance energy transfer (FRET) pairing of QD-decorated fibers and fluorescent proteins.


Assuntos
Técnicas Biossensoriais/instrumentação , Nanopartículas Metálicas/química , Nanofibras/química , Ouro/química , Pontos Quânticos/química
9.
Supramol Chem ; 27(1-2): 123-126, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-27122961

RESUMO

A new class of cationic gold nanoparticles has been synthesized bearing benzyl moieties featuring -NO2 and -OMe groups to investigate the regioisomeric control of aromatic nanoparticle-protein recognition. In general, nanoparticles bearing electron withdrawing group demonstrated higher binding affinities towards green fluorescent protein (GFP) compared to electron-donating groups. Significantly, a ~7.5 and ~4.3 fold increase in binding with GFP was observed for -NO2 groups in meta- and para-position respectively, while ortho-substitution showed similar binding compared to the unsubstituted ring. These findings demonstrated that nanoparticle-protein interaction can be controlled by the tuning the spatial orientation and the relative electronic properties of the aromatic substituents. This improved biomolecular recognition provides opportunities for enhanced biosensing and functional protein delivery to the cells.

10.
Angew Chem Int Ed Engl ; 54(2): 506-10, 2015 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-25393227

RESUMO

The use of nanoparticle-stabilized nanocapsules (NPSCs) for the direct cytosolic delivery of siRNA is reported. In this approach, siRNA is complexed with cationic arginine-functionalized gold nanoparticles by electrostatic interactions, with the resulting ensemble self-assembled onto the surface of fatty acid nanodroplets to form a NPSC/siRNA nanocomplex. The complex rapidly delivers siRNA into the cytosol through membrane fusion, a mechanism supported by cellular uptake studies. Using destabilized green fluorescent protein (deGFP) as a target, 90% knockdown was observed in HEK293 cells. Moreover, the delivery of siRNA targeting polo-like kinase 1 (siPLK1) efficiently silenced PLK1 expression in cancer cells with concomitant cytotoxicity.


Assuntos
Nanopartículas , Peptídeos/química , RNA Interferente Pequeno/química , Microscopia Eletrônica de Transmissão , RNA Interferente Pequeno/administração & dosagem
11.
Angew Chem Int Ed Engl ; 53(20): 5137-41, 2014 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-24692293

RESUMO

Multifunctional self-assembled systems present platforms for fundamental research and practical applications as they provide tunability of structure, functionality, and stimuli responsiveness. Pragmatic structures for biological applications have multiple design requirements, including control of size, stability, and environmental response. Here we present the fabrication of multifunctional nanoparticle-stabilized capsules (NPSCs) by using a set of orthogonal supramolecular interactions. In these capsules, fluorescent proteins are attached to quantum dots through polyhistidine coordination. These anionic assemblies interact laterally with cationic gold nanoparticles that are anchored to the fatty acid core through guanidinium-carboxylate interactions. The lipophilic core then provides a reservoir for hydrophobic endosome-disrupting agents, thereby generating a system featuring stimuli-responsive release of a payload into the cytosol with fluorescence monitoring.


Assuntos
Nanocápsulas , Pontos Quânticos
12.
Chem Soc Rev ; 41(7): 2539-44, 2012 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-22310807

RESUMO

Control of interactions between nanoparticles and biosystems is essential for the effective utilization of these materials in biomedicine. A wide variety of nanoparticle surface structures have been developed for imaging, sensing, and delivery applications. In this research Highlight, we will emphasize advances in tailoring nanoparticle interfaces for implementation in nanomedicine.


Assuntos
Nanomedicina , Nanopartículas/química , Antineoplásicos/uso terapêutico , Sistemas de Liberação de Medicamentos , Humanos , Neoplasias/tratamento farmacológico , Propriedades de Superfície
13.
bioRxiv ; 2023 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-37398067

RESUMO

Relating the macroscopic properties of protein-based materials to their underlying component microstructure is an outstanding challenge. Here, we exploit computational design to specify the size, flexibility, and valency of de novo protein building blocks, as well as the interaction dynamics between them, to investigate how molecular parameters govern the macroscopic viscoelasticity of the resultant protein hydrogels. We construct gel systems from pairs of symmetric protein homo-oligomers, each comprising 2, 5, 24, or 120 individual protein components, that are crosslinked either physically or covalently into idealized step-growth biopolymer networks. Through rheological assessment and molecular dynamics (MD) simulation, we find that the covalent linkage of multifunctional precursors yields hydrogels whose viscoelasticity depends on the crosslink length between the constituent building blocks. In contrast, reversibly crosslinking the homo-oligomeric components with a computationally designed heterodimer results in non-Newtonian biomaterials exhibiting fluid-like properties under rest and low shear, but shear-stiffening solid-like behavior at higher frequencies. Exploiting the unique genetic encodability of these materials, we demonstrate the assembly of protein networks within living mammalian cells and show via fluorescence recovery after photobleaching (FRAP) that mechanical properties can be tuned intracellularly, in correlation with matching formulations formed extracellularly. We anticipate that the ability to modularly construct and systematically program the viscoelastic properties of designer protein-based materials could have broad utility in biomedicine, with applications in tissue engineering, therapeutic delivery, and synthetic biology.

14.
bioRxiv ; 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37781607

RESUMO

Endocytosis and lysosomal trafficking of cell surface receptors can be triggered by interaction with endogenous ligands. Therapeutic approaches such as LYTAC1,2 and KineTAC3, have taken advantage of this to target specific proteins for degradation by fusing modified native ligands to target binding proteins. While powerful, these approaches can be limited by possible competition with the endogenous ligand(s), the requirement in some cases for chemical modification that limits genetic encodability and can complicate manufacturing, and more generally, there may not be natural ligands which stimulate endocytosis through a given receptor. Here we describe general protein design approaches for designing endocytosis triggering binding proteins (EndoTags) that overcome these challenges. We present EndoTags for the IGF-2R, ASGPR, Sortillin, and Transferrin receptors, and show that fusing these tags to proteins which bind to soluble or transmembrane protein leads to lysosomal trafficking and target degradation; as these receptors have different tissue distributions, the different EndoTags could enable targeting of degradation to different tissues. The modularity and genetic encodability of EndoTags enables AND gate control for higher specificity targeted degradation, and the localized secretion of degraders from engineered cells. The tunability and modularity of our genetically encodable EndoTags should contribute to deciphering the relationship between receptor engagement and cellular trafficking, and they have considerable therapeutic potential as targeted degradation inducers, signaling activators for endocytosis-dependent pathways, and cellular uptake inducers for targeted antibody drug and RNA conjugates.

15.
Malar J ; 11: 54, 2012 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-22361388

RESUMO

BACKGROUND: Geldanamycin (GA), a benzoquinone ansamycin antibiotic has been shown in vitro to possess anti-plasmodial activity. Pharmacological activity of this drug is attributed to its ability to inhibit PfHSP90. The parasite growth arrest has been shown to be due to drug-induced blockage of the transition from ring to trophozoite stage. To further evaluate the consequences of this pharmacodynamic feature, the anti-malarial activity of GA analogs with enhanced drug properties in a Plasmodium-infected animal model have been evaluated for their capacity to induce clearance of the parasite. In the process, a hypothesis was subsequently tested regarding the susceptibility of the cured animals to malaria reflected in an attenuated parasite load that may be evoked by a protective immune response in the host. METHODS: Six weeks old Swiss mice were infected with a lethal Plasmodium yoelii (17XL) strain. On appearance of clinical symptoms of malaria, these animals were treated with two different GA derivatives and the parasite load was monitored over 15-16 days. Drug-treated animals cured of the parasite were then re-challenged with a lethal dose of P. yoelii 17XL. Serum samples from GA cured mice that were re-challenged with P. yoelii 17XL were examined for the presence of antibodies against the parasite proteins using western blot analysis. RESULTS: Treatment of P. yoelii 17XL infected mice with GA derivatives showed slow recovery from clinical symptoms of the disease. Blood smears from drug treated mice indicated a dominance of ring stage parasites when compared to controls. Although, P. yoelii preferentially invades normocytes (mature rbcs), in drug-treated animals there was an increased invasion of reticulocytes. Cured animals exhibited robust protection against subsequent infection and serum samples from these animals showed antibodies against a vast majority of parasite proteins. CONCLUSIONS: Treatment with GA derivatives blocked the transition from ring to trophozoite stage presumably by the inhibition of HSP90 associated functions. Persistence of parasite in ring stage leads to robust humoral immune response as well as a shift in invasion specificity from normocytes to reticulocyte. It is likely that the treatment with the water-soluble GA derivative creates an attenuated state (less virulent with altered invasion specificity) that persists in the host system, allowing it to mount a robust immune response.


Assuntos
Antimaláricos/administração & dosagem , Benzoquinonas/administração & dosagem , Lactamas Macrocíclicas/administração & dosagem , Malária/tratamento farmacológico , Plasmodium yoelii/efeitos dos fármacos , Animais , Anticorpos Antiprotozoários/sangue , Western Blotting , Modelos Animais de Doenças , Malária/imunologia , Malária/parasitologia , Camundongos , Carga Parasitária , Plasmodium yoelii/crescimento & desenvolvimento , Plasmodium yoelii/imunologia , Resultado do Tratamento
16.
Nanoscale ; 14(6): 2411-2418, 2022 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-35089292

RESUMO

Control over supramolecular recognition between proteins and nanoparticles (NPs) is of fundamental importance in therapeutic applications and sensor development. Most NP-protein binding approaches use 'tags' such as biotin or His-tags to provide high affinity; protein surface recognition provides a versatile alternative strategy. Generating high affinity NP-protein interactions is challenging however, due to dielectric screening at physiological ionic strengths. We report here the co-engineering of nanoparticles and protein to provide high affinity binding. In this strategy, 'supercharged' proteins provide enhanced interfacial electrostatic interactions with complementarily charged nanoparticles, generating high affinity complexes. Significantly, the co-engineered protein-nanoparticle assemblies feature high binding affinity even at physiologically relevant ionic strength conditions. Computational studies identify both hydrophobic and electrostatic interactions as drivers for these high affinity NP-protein complexes.


Assuntos
Nanopartículas , Interações Hidrofóbicas e Hidrofílicas , Ligação Proteica , Proteínas , Eletricidade Estática
17.
Nat Commun ; 12(1): 2294, 2021 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-33863889

RESUMO

A systematic and robust approach to generating complex protein nanomaterials would have broad utility. We develop a hierarchical approach to designing multi-component protein assemblies from two classes of modular building blocks: designed helical repeat proteins (DHRs) and helical bundle oligomers (HBs). We first rigidly fuse DHRs to HBs to generate a large library of oligomeric building blocks. We then generate assemblies with cyclic, dihedral, and point group symmetries from these building blocks using architecture guided rigid helical fusion with new software named WORMS. X-ray crystallography and cryo-electron microscopy characterization show that the hierarchical design approach can accurately generate a wide range of assemblies, including a 43 nm diameter icosahedral nanocage. The computational methods and building block sets described here provide a very general route to de novo designed protein nanomaterials.


Assuntos
Ciência dos Materiais/métodos , Complexos Multiproteicos/ultraestrutura , Nanoestruturas/ultraestrutura , Cristalografia por Raios X , Simulação de Dinâmica Molecular , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/ultraestrutura , Software
18.
Arch Biochem Biophys ; 485(2): 128-38, 2009 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-19268421

RESUMO

Plasmodium falciparum enolase (Pfen) is of photosynthetic lineage as evident from the presence of a plant like pentapeptide insert (104)EWGWS(108) in a highly conserved surface loop of the protein. Such a unique region which is absent in human enolase, constitutes an excellent target for inhibitor design, provided its essentiality for function could be demonstrated. A deletion Pfen lacking this insert was made and the effect of this deletion on activity and structure was assessed. Deletion of insert resulted in approximately 100-fold decrease in k(cat)/K(m) and caused dissociation of dimeric form into monomers. Since the parasite enolase localizes on the merozoite surface and confers partial protection against malaria [I. Pal-Bhowmick, M. Mehta, I. Coppens, S. Sharma, G.K. Jarori, Infect. Immun. 75(11) (2007) 5500-5008], the possibility of the insert being involved in protective response was examined. Serum from Pfen vaccinated mouse which showed prolonged survival to parasite challenge had negligible reactivity against deletion protein as compared to wild type enolase. These results indicate that the insert sequence is required for the full enolase activity and may constitute the protective antigenic epitope in parasite enolase.


Assuntos
Fosfopiruvato Hidratase/metabolismo , Plasmodium falciparum/enzimologia , Sequência de Aminoácidos , Animais , Sequência de Bases , Varredura Diferencial de Calorimetria , Dicroísmo Circular , Primers do DNA , Dimerização , Eletroforese em Gel de Poliacrilamida , Ensaio de Imunoadsorção Enzimática , Cinética , Dados de Sequência Molecular , Fosfopiruvato Hidratase/química , Fosfopiruvato Hidratase/imunologia , Conformação Proteica , Homologia de Sequência de Aminoácidos , Espectrometria de Fluorescência
19.
Adv Ther (Weinh) ; 2(10)2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34095457

RESUMO

Macrophages are key effectors of host defense and metabolism, making them promising targets for transient genetic therapy. Gene editing through delivery of the Cas9-ribonucleoprotein (RNP) provides multiple advantages over gene delivery-based strategies for introducing CRISPR machinery to the cell. There are, however, significant physiological, cellular, and intracellular barriers to the effective delivery of the Cas9 protein and guide RNA (sgRNA) that have to date, restricted in vivo Cas9 protein-based approaches to local/topical delivery applications. Herein we describe a new nanoassembled platform featuring co-engineered nanoparticles and Cas9 protein that has been developed to provide efficient Cas9-sgRNA delivery and concomitant CRISPR editing through systemic tail-vein injection into mice, achieving >8% gene editing efficiency in macrophages of the liver and spleen.

20.
Bio Protoc ; 7(20)2017 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-29226180

RESUMO

In this protocol, engineered Cas9-ribonucleoprotein (Cas9 protein and sgRNA, together called Cas9-RNP) and gold nanoparticles are used to make nanoassemblies that are employed to deliver Cas9-RNP into cell cytoplasm and nucleus. Cas9 protein is engineered with an N-terminus glutamic acid tag (E-tag or En, where n = the number of glutamic acid in an E-tag and usually n = 15 or 20), C-terminus nuclear localizing signal (NLS), and a C-terminus 6xHis-tag. [Cas9En hereafter] To use this protocol, the first step is to generate the required materials (gold nanoparticles, recombinant Cas9En, and sgRNA). Laboratory-synthesis of gold nanoparticles can take up to a few weeks, but can be synthesized in large batches that can be used for many years without compromising the quality. Cas9En can be cloned from a regular SpCas9 gene (Addgene plasmid id = 47327), and expressed and purified using standard laboratory procedures which are not a part of this protocol. Similarly, sgRNA can be laboratory-synthesized using in vitro transcription from a template gene (Addgene plasmid id = 51765) or can be purchased from various sources. Once these materials are ready, it takes about ~30 min to make the Cas9En-RNP complex and 10 min to make the Cas9En-RNP/nanoparticles nanoassemblies, which are immediately used for delivery (Figure 1). Complete delivery (90-95% cytoplasmic and nuclear delivery) is achieved in less than 3 h. Follow-up editing experiments require additional time based on users' need. Synthesis of arginine functionalized gold nanoparticles (ArgNPs) (Yang et al., 2011), expression of recombinant Cas9En, and in vitro synthesis of sgRNA is reported elsewhere (Mout et al., 2017). We report here only the generation of the delivery vehicle i.e., the fabrication of Cas9En-RNP/ArgNPs nanoassembly.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA