RESUMO
Movement variability is a component of human movement. This study applied recurrence quantification analysis (RQA) on electromyographic signals to determine the effects of two types of variables on movement variability during a short, simulated repetitive and standardised occupational clip-fitting task. The electrical activity of six muscles in the dominant upper limb was recorded in 21 participants. Variables related to the task performance (insertion force and movements performed when fitting clips) affected RQA measures: recurrence rate (RR), percentage of determinism (DET) and diagonal line length entropy (ENT). Variables related to participant's characteristics (sex, age, and BMI) affected only DET and ENT. A constrasting variability was observed such as a high-DET value combined with a high-ENT value and inversely. Variables affected mainly the recurrences organisation of the more distal muscles. Even if movement variability is complex, it should be considered by ergonomists and work place designers to better understanding of operators' movements. Practitioner summary: It is essential to consider the complexity of operators' movement variability to understand their activities. Based on intrinsic movement variability knowledge, ergonomists and work place designers will be able to modulate the movement variability by acting on workstation designs and occupational organisation with the aim of preserving operators' health. Abbreviations: RR: recurrence rate; DET: percentage of determinism; ENT: diagonal line length entropy; BMI: body mass index; FDS: flexor digitorum superficialis; EXT: extensor digitorum communis; BIC: biceps brachii; TRI: triceps brachii; DEL: deltoideus anterior; TRA: trapezius pars descendens; F: female; M: male; S: supinated; P: pronated; CM: continuous movement; DM: discontinuous movement.
Assuntos
Movimento , Músculo Esquelético , Braço , Eletromiografia , Feminino , Antebraço , Humanos , Masculino , Extremidade SuperiorRESUMO
The aim of this study was to assess mental workload in which various load sources must be integrated to derive reliable workload estimates. We report a new algorithm for computing weights from qualitative fuzzy integrals and apply it to the National Aeronautics and Space Administration -Task Load indeX (NASA-TLX) subscales in order to replace the standard pair-wise weighting technique (PWT). In this paper, two empirical studies were reported: (1) In a laboratory experiment, age- and task-related variables were investigated in 53 male volunteers and (2) In a field study, task- and job-related variables were studied on aircrews during 48 commercial flights. The results found in this study were as follows: (i) in the experimental setting, fuzzy estimates were highly correlated with classical (using PWT) estimates; (ii) in real work conditions, replacing PWT by automated fuzzy treatments simplified the NASA-TLX completion; (iii) the algorithm for computing fuzzy estimates provides a new classification procedure sensitive to various variables of work environments and (iv) subjective and objective measures can be used for the fuzzy aggregation of NASA-TLX subscales. PRACTITIONER SUMMARY: NASA-TLX, a classical tool for mental workload assessment, is based on a weighted sum of ratings from six subscales. A new algorithm, which impacts on input data collection and computes weights and indexes from qualitative fuzzy integrals, is evaluated through laboratory and field studies. Pros and cons are discussed.
Assuntos
Aeronaves , Algoritmos , Carga de Trabalho/psicologia , Adulto , Fatores Etários , Idoso , Frequência Cardíaca , Humanos , Masculino , Processos Mentais/fisiologia , Pessoa de Meia-Idade , Psicometria , Teste de Stroop , Análise e Desempenho de TarefasRESUMO
OBJECTIVES: To determine whether call center dispatchers wearing headsets are subject to auditory fatigue at the end of a work shift. MATERIAL AND METHODS: Data was gathered at times when call centers were busiest. All call operators wore a headset for up to 12 h. Acoustic environment and noise exposure under the headset were continuously recorded during the entire work shift. Variations in auditory parameters were assessed using pure-tone air-conduction audiometry and an objective test based on distortion product otoacoustic emissions - contralateral suppression of distortion product otoacoustic emission (DPOAE) amplitudes (EchoScan test). Thirty-nine operators and 16 controls, all volunteers, were selected from 3 call centers (sales, assistance, and emergency) where all cognitive tasks were accomplished by phone and on computers. RESULTS: No acoustic shock was detected during the investigation. The highest normalized noise exposure (daily noise exposure level - LEX,8 h) measured was 75.5 dBA. No significant variation in auditory performances was detected with either pure-tone air-conduction audiometry or the EchoScan test. Nevertheless, dispatchers expressed a feeling of tiredness. CONCLUSIONS: For an equivalent diffuse field noise exposure, the use of a headset does not seem to worsen auditory fatigue for call center operators. The dispatcher's fatigue was probably due to the duration of the work shift or to the tasks they performed rather than to the noise exposure under a headset. Int J Occup Med Environ Health 2018;31(2):217-226.