Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Lab Invest ; 97(8): 922-934, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28394319

RESUMO

Hyperhomocysteinemia (HHcy) has been shown to promote vascular inflammation and atherosclerosis, but the underlying mechanisms remain largely unknown. The NLRP3 inflammasome has been identified as the cellular machinery responsible for activation of inflammatory processes. In this study, we hypothesized that the activation of NLRP3 inflammasomes contributes to HHcy-induced inflammation and atherosclerosis. ApoE-/- mice were fed regular chow, high-fat (HF) diet, or HF plus high methionine diet to induce HHcy. To assess the role of NLRP3 inflammasomes in HHcy-aggravated atherosclerosis, NLRP3 shRNA viral suspension was injected via tail vein to knock down the NLRP3 gene. Increased plasma levels of IL-1ß and IL-18, aggravated macrophage infiltration into atherosclerotic lesions, and accelerated development of atherosclerosis were detected in HHcy mice as compared with control mice, and were associated with the activation of NLRP3 inflammasomes. Silencing the NLRP3 gene significantly suppressed NLRP3 inflammasome activation, reduced plasma levels of proinflammatory cytokines, attenuated macrophage infiltration and improved HHcy-induced atherosclerosis. We also examined the effect of homocysteine (Hcy) on NLRP3 inflammasome activation in THP-1-differentiated macrophages in the presence or absence of NLRP3 siRNA or the caspase-1 inhibitor Z-WEHD-FMK. We found that Hcy activated NLRP3 inflammasomes and promoted subsequent production of IL-1ß and IL-18 in macrophages, which were blocked by NLRP3 gene silencing or Z-WEHD-FMK. As reactive oxygen species (ROS) may have a central role in NLRP3 inflammasome activation, we next investigated whether antioxidant N-acetyl-l-cysteine (NAC) prevented Hcy-induced NLRP3 inflammasome activation in macrophages. We found Hcy-induced NLRP3 inflammasome activation was abolished by NAC. Treatment with NAC in HHcy mice also suppressed NLRP3 inflammasome activation and improved HHcy-induced atherosclerosis. These data suggest that the activation of NLRP3 inflammasomes contributes to HHcy-aggravated inflammation and atherosclerosis in apoE-/- mice. Hcy activates NLRP3 inflammasomes in ROS-dependent pathway in macrophages. These results may have implication for the treatment of HHcy-associated cardiovascular diseases.


Assuntos
Apolipoproteínas E/genética , Aterosclerose/metabolismo , Hiper-Homocisteinemia/metabolismo , Inflamassomos/metabolismo , Inflamação/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Animais , Linhagem Celular Tumoral , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética
2.
ACS Omega ; 7(35): 30856-30878, 2022 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-36092626

RESUMO

To understand the geochemical characteristics of late Paleozoic coal in the Changzhi and Jincheng mining areas in the southeastern Qinshui Basin, major and rare earth element analyses were conducted through inductively coupled plasma-mass spectrometry (ICP-MS), X-ray fluorescence spectrometry (XRF), and proximate analysis. The results show that the study coals are bituminous A rank and anthracite C rank (R o,ran: 1.6-3.24%) with low-ash, low-moisture, low-volatile, and low- to medium-sulfur characteristics. The main forms of sulfur in the study coals are organic sulfur, followed by pyritic sulfur, only some coals with high sulfur contents in the Taiyuan Formation (SGJ, WTP, FHS) are mainly pyritic sulfur, and the contents of sulfate sulfur are extremely low. The major elements of the late Paleozoic coal in the southeastern Qinshui Basin are mainly SiO2 (4.77%) and Al2O3 (3.64%), followed by Fe2O3 (1.22%), CaO (1.53%), FeO (0.48%), MgO (0.25%), Na2O (0.21%), P2O5 (0.18%), TiO2 (0.15%), and minor K2O (0.04%) (on a whole-coal basis). Through correlation analysis and cluster analysis, the occurrence states of major elements in the Shanxi and Taiyuan Formations are different. The average rare earth elements and yttrium (REY) value in the study area is 88.68 µg/g (on a whole-coal basis). The mean light REY (LREY)-to-heavy REY (HREY) ratio is 26.33. The mean values of δEu, δCe, Y, and Gd are 0.60, 0.99, 1.07, and 1.02, respectively. The Shanxi Formation is dominated by the L-type REY enrichment, while the Taiyuan Formation is dominated by the M-H-type REY enrichment. The fractionation degree of REY in the Taiyuan Formation is lower than that in the Shanxi Formation. Rare earth elements in Shanxi coal mainly occur in clay minerals, and some rare earth elements are adsorbed and enriched by vitrinite. Rare earth elements in Taiyuan coal mainly occur in clay minerals and pyrite, and some rare earth elements occur in inertinite. A warm, humid, low-salinity, oxidizing, and acidic environment was favorable for REY enrichment. The coal-forming environment was weakly oxidizing and reducing, and the paleosalinity of the water was relatively high during late Paleozoic coal deposition in the southeastern Qinshui Basin. The paleotemperature of the Shanxi Formation is higher than that of the Taiyuan Formation. The provenance is mainly from an upper crustal felsic source region, the source rocks are mainly post-Archean sedimentary and calcareous mudstones mixed with some granite and alkaline basalt from the Yinshan Upland, and the tectonic setting of the source area mainly includes island arcs and active continental margins.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA