Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 544(7651): 427-433, 2017 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-28447635

RESUMO

Cereal grasses of the Triticeae tribe have been the major food source in temperate regions since the dawn of agriculture. Their large genomes are characterized by a high content of repetitive elements and large pericentromeric regions that are virtually devoid of meiotic recombination. Here we present a high-quality reference genome assembly for barley (Hordeum vulgare L.). We use chromosome conformation capture mapping to derive the linear order of sequences across the pericentromeric space and to investigate the spatial organization of chromatin in the nucleus at megabase resolution. The composition of genes and repetitive elements differs between distal and proximal regions. Gene family analyses reveal lineage-specific duplications of genes involved in the transport of nutrients to developing seeds and the mobilization of carbohydrates in grains. We demonstrate the importance of the barley reference sequence for breeding by inspecting the genomic partitioning of sequence variation in modern elite germplasm, highlighting regions vulnerable to genetic erosion.


Assuntos
Cromossomos de Plantas/genética , Genoma de Planta/genética , Hordeum/genética , Núcleo Celular/genética , Centrômero/genética , Cromatina/genética , Cromatina/metabolismo , Mapeamento Cromossômico , Cromossomos Artificiais Bacterianos/genética , Variação Genética , Genômica , Haplótipos/genética , Meiose/genética , Sequências Repetitivas de Ácido Nucleico/genética , Sementes/genética
2.
Proc Natl Acad Sci U S A ; 117(49): 31510-31518, 2020 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-33229576

RESUMO

Herbivory is fundamental to the regulation of both global food webs and the extent of agricultural crop losses. Induced plant responses to herbivores promote resistance and often involve the perception of specific herbivore-associated molecular patterns (HAMPs); however, precisely defined receptors and elicitors associated with herbivore recognition remain elusive. Here, we show that a receptor confers signaling and defense outputs in response to a defined HAMP common in caterpillar oral secretions (OS). Staple food crops, including cowpea (Vigna unguiculata) and common bean (Phaseolus vulgaris), specifically respond to OS via recognition of proteolytic fragments of chloroplastic ATP synthase, termed inceptins. Using forward-genetic mapping of inceptin-induced plant responses, we identified a corresponding leucine-rich repeat receptor, termed INR, specific to select legume species and sufficient to confer inceptin-induced responses and enhanced defense against armyworms (Spodoptera exigua) in tobacco. Our results support the role of plant immune receptors in the perception of chewing herbivores and defense.


Assuntos
Herbivoria/fisiologia , Moléculas com Motivos Associados a Patógenos/metabolismo , Imunidade Vegetal , Proteínas de Plantas/metabolismo , Receptores de Superfície Celular/metabolismo , Animais , Plantas Geneticamente Modificadas , Spodoptera/fisiologia , Nicotiana/imunologia , Vigna/imunologia
3.
Chromosoma ; 130(2-3): 133-147, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33909141

RESUMO

Cytogenomic resources have accelerated synteny and chromosome evolution studies in plant species, including legumes. Here, we established the first cytogenetic map of V. angularis (Va, subgenus Ceratotropis) and compared this new map with those of V. unguiculata (Vu, subgenus Vigna) and P. vulgaris (Pv) by BAC-FISH and oligopainting approaches. We mapped 19 Vu BACs and 35S rDNA probes to the 11 chromosome pairs of Va, Vu, and Pv. Vigna angularis shared a high degree of macrosynteny with Vu and Pv, with five conserved syntenic chromosomes. Additionally, we developed two oligo probes (Pv2 and Pv3) used to paint Vigna orthologous chromosomes. We confirmed two reciprocal translocations (chromosomes 2 and 3 and 1 and 8) that have occurred after the Vigna and Phaseolus divergence (~9.7 Mya). Besides, two inversions (2 and 4) and one translocation (1 and 5) have occurred after Vigna and Ceratotropis subgenera separation (~3.6 Mya). We also observed distinct oligopainting patterns for chromosomes 2 and 3 of Vigna species. Both Vigna species shared similar major rearrangements compared to Pv: one translocation (2 and 3) and one inversion (chromosome 3). The sequence synteny identified additional inversions and/or intrachromosomal translocations involving pericentromeric regions of both orthologous chromosomes. We propose chromosomes 2 and 3 as hotspots for chromosomal rearrangements and de novo centromere formation within and between Vigna and Phaseolus. Our BAC- and oligo-FISH mapping contributed to physically trace the chromosome evolution of Vigna and Phaseolus and its application in further studies of both genera.


Assuntos
Phaseolus , Vigna , Cromossomos de Plantas/genética , Phaseolus/genética , Sintenia , Translocação Genética , Vigna/genética
4.
J Exp Bot ; 72(18): 6219-6229, 2021 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-34106233

RESUMO

Pod shattering, which causes the explosive release of seeds from the pod, is one of the main sources of yield losses in cowpea in arid and semi-arid areas. Reduction of shattering has therefore been a primary target for selection during domestication and improvement of cowpea, among other species. Using a mini-core diversity panel of 368 cowpea accessions, four regions with a statistically significant association with pod shattering were identified. Two genes (Vigun03g321100 and Vigun11g100600), involved in cell wall biosynthesis, were identified as strong candidates for pod shattering. Microscopic analysis was conducted on a subset of accessions representing the full spectrum of shattering phenotypes. This analysis indicated that the extent of wall fiber deposition was highly correlated with shattering. The results from this study also demonstrate that pod shattering in cowpea is exacerbated by arid environmental conditions. Finally, using a subset of West African landraces, patterns of historical selection for shattering resistance related to precipitation in the environment of origin were identified. Together, these results shed light on sources of resistance to pod shattering, which will, in turn, improve climate resilience of a major global nutritional staple.


Assuntos
Vigna , Domesticação , Fenótipo , Sementes/genética , Vigna/genética
5.
Chromosome Res ; 28(3-4): 293-306, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32654079

RESUMO

Comparative cytogenetic mapping is a powerful approach to gain insights into genome organization of orphan crops, lacking a whole sequenced genome. To investigate the cytogenomic evolution of important Vigna and Phaseolus beans, we built a BAC-FISH (fluorescent in situ hybridization of bacterial artificial chromosome) map of Vigna aconitifolia (Vac, subgenus Ceratotropis), species with no sequenced genome, and compared with V. unguiculata (Vu, subgenus Vigna) and Phaseolus vulgaris (Pv) maps. Seventeen Pv BACs, eight Vu BACs, and 5S and 35S rDNA probes were hybridized in situ on the 11 Vac chromosome pairs. Five Vac chromosomes (Vac6, Vac7, Vac9, Vac10, and Vac11) showed conserved macrosynteny and collinearity between V. unguiculata and P. vulgaris. On the other hand, we observed collinearity breaks, identified by pericentric inversions involving Vac2 (Vu2), Vac4 (Vu4), and Vac3 (Pv3). We also detected macrosynteny breaks of translocation type involving chromosomes 1 and 8 of V. aconitifolia and P. vulgaris; 2 and 3 of V. aconitifolia and P. vulgaris; and 1 and 5 of V. aconitifolia and V. unguiculata. Considering our data and previous BAC-FISH studies, six chromosomes (1, 2, 3, 4, 5, and 8) are involved in major karyotype divergences between genera and five (1, 2, 3, 4, and 5) between Vigna subgenera, including mechanisms such as duplications, inversions, and translocations. Macrosynteny breaks between Vigna and Phaseolus suggest that the major chromosomal rearrangements have occurred within the Vigna clade. Our cytogenomic comparisons bring new light on the degree of shared macrosynteny and mechanisms of karyotype diversification during Vigna and Phaseolus evolution.


Assuntos
Citogenética , Genômica , Phaseolus/genética , Vigna/genética , Mapeamento Cromossômico , Cromossomos Artificiais Bacterianos , Cromossomos de Plantas , Citogenética/métodos , Genoma de Planta , Genômica/métodos , Hibridização in Situ Fluorescente , Cariótipo , Cariotipagem
6.
Plant J ; 98(5): 767-782, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31017340

RESUMO

Cowpea (Vigna unguiculata [L.] Walp.) is a major crop for worldwide food and nutritional security, especially in sub-Saharan Africa, that is resilient to hot and drought-prone environments. An assembly of the single-haplotype inbred genome of cowpea IT97K-499-35 was developed by exploiting the synergies between single-molecule real-time sequencing, optical and genetic mapping, and an assembly reconciliation algorithm. A total of 519 Mb is included in the assembled sequences. Nearly half of the assembled sequence is composed of repetitive elements, which are enriched within recombination-poor pericentromeric regions. A comparative analysis of these elements suggests that genome size differences between Vigna species are mainly attributable to changes in the amount of Gypsy retrotransposons. Conversely, genes are more abundant in more distal, high-recombination regions of the chromosomes; there appears to be more duplication of genes within the NBS-LRR and the SAUR-like auxin superfamilies compared with other warm-season legumes that have been sequenced. A surprising outcome is the identification of an inversion of 4.2 Mb among landraces and cultivars, which includes a gene that has been associated in other plants with interactions with the parasitic weed Striga gesnerioides. The genome sequence facilitated the identification of a putative syntelog for multiple organ gigantism in legumes. A revised numbering system has been adopted for cowpea chromosomes based on synteny with common bean (Phaseolus vulgaris). An estimate of nuclear genome size of 640.6 Mbp based on cytometry is presented.


Assuntos
Cromossomos de Plantas/genética , Genes de Plantas/genética , Tamanho do Genoma/genética , Genoma de Planta/genética , Vigna/genética , Mapeamento Cromossômico , DNA de Plantas/química , DNA de Plantas/genética , Phaseolus/genética , Retroelementos/genética , Análise de Sequência de DNA/métodos , Sintenia
7.
Plant J ; 93(6): 1129-1142, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29356213

RESUMO

Multi-parent advanced generation inter-cross (MAGIC) populations are an emerging type of resource for dissecting the genetic structure of traits and improving breeding populations. We developed a MAGIC population for cowpea (Vigna unguiculata L. Walp.) from eight founder parents. These founders were genetically diverse and carried many abiotic and biotic stress resistance, seed quality and agronomic traits relevant to cowpea improvement in the United States and sub-Saharan Africa, where cowpea is vitally important in the human diet and local economies. The eight parents were inter-crossed using structured matings to ensure that the population would have balanced representation from each parent, followed by single-seed descent, resulting in 305 F8 recombinant inbred lines each carrying a mosaic of genome blocks contributed by all founders. This was confirmed by single nucleotide polymorphism genotyping with the Illumina Cowpea Consortium Array. These lines were on average 99.74% homozygous but also diverse in agronomic traits across environments. Quantitative trait loci (QTLs) were identified for several parental traits. Loci with major effects on photoperiod sensitivity and seed size were also verified by biparental genetic mapping. The recombination events were concentrated in telomeric regions. Due to its broad genetic base, this cowpea MAGIC population promises breakthroughs in genetic gain, QTL and gene discovery, enhancement of breeding populations and, for some lines, direct releases as new varieties.


Assuntos
Genes de Plantas/genética , Melhoramento Vegetal/métodos , Locos de Características Quantitativas/genética , Vigna/genética , Mapeamento Cromossômico , Cromossomos de Plantas/genética , Cruzamentos Genéticos , Genética Populacional , Genoma de Planta/genética , Genótipo , Filogenia , Polimorfismo de Nucleotídeo Único , Sementes/genética , Especificidade da Espécie , Vigna/classificação
8.
J Exp Bot ; 70(12): 3101-3110, 2019 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-30949664

RESUMO

Orphan genes (OGs) are genes that are restricted to a single species or a particular taxonomic group. To date, little is known about the functions of OGs in domesticated crops. Here, we report our findings on the relationships between OGs and environmental adaptation in cowpea (Vigna unguiculata). We identified 578 expressed OGs, of which 73.2% were predicted to be non-coding. Transcriptomic analyses revealed a high rate of OGs that were drought inducible in roots when compared with conserved genes. Co-expression analysis further revealed the possible involvement of OGs in stress response pathways. Overexpression of UP12_8740, a drought-inducible OG, conferred enhanced tolerance to osmotic stresses and soil drought. By combining Capture-Seq and fluorescence-based Kompetitive allele-specific PCR (KASP), we efficiently genotyped single nucleotide polymorphisms (SNPs) on OGs across a 223 accession cowpea germplasm collection. Population genomic parameters, including polymorphism information content (PIC), expected heterozygosity (He), nucleotide diversity (π), and Tajima's D statistics, that were calculated based on these SNPs, showed distinct signatures between the grain- and vegetable-type subpopulations of cowpea. This study reinforces the idea that OGs are a valuable resource for identifying new genes related to species-specific environmental adaptations and fosters new insights that artificial selection on OGs might have contributed to balancing the adaptive and agronomic traits in domesticated crops in various ecoclimatic conditions.


Assuntos
Adaptação Biológica , Clima , Secas , Genes de Plantas , Seleção Genética , Vigna/genética , Produtos Agrícolas/genética , Produtos Agrícolas/fisiologia , Domesticação , Perfilação da Expressão Gênica , Genótipo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Polimorfismo de Nucleotídeo Único , Vigna/fisiologia
9.
Theor Appl Genet ; 132(11): 3079-3087, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31367839

RESUMO

KEY MESSAGE: This paper combined GWAS, meta-analysis and sequence homology comparison with common bean to identify regions associated with seed size variation in domesticated cowpea. Seed size is an important trait for yield and commercial value in dry-grain cowpea. Seed size varies widely among different cowpea accessions, and the genetic basis of such variation is not yet well understood. To better decipher the genetic basis of seed size, a genome-wide association study (GWAS) and meta-analysis were conducted on a panel of 368 cowpea diverse accessions from 51 countries. Four traits, including seed weight, length, width and density were evaluated across three locations. Using 51,128 single nucleotide polymorphisms covering the cowpea genome, 17 loci were identified for these traits. One locus was common to weight, width and length, suggesting pleiotropy. By integrating synteny-based analysis with common bean, six candidate genes (Vigun05g036000, Vigun05g039600, Vigun05g204200, Vigun08g217000, Vigun11g187000, and Vigun11g191300) which are implicated in multiple functional categories related to seed size such as endosperm development, embryo development, and cell elongation were identified. These results suggest that a combination of GWAS meta-analysis with synteny comparison in a related plant is an efficient approach to identify candidate gene (s) for complex traits in cowpea. The identified loci and candidate genes provide useful information for improving cowpea varieties and for molecular investigation of seed size.


Assuntos
Sementes/fisiologia , Vigna/genética , Mapeamento Cromossômico , Genes de Plantas , Estudos de Associação Genética , Genótipo , Fenótipo , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Vigna/fisiologia
10.
Plant J ; 89(5): 1042-1054, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27775877

RESUMO

Cowpea (Vigna unguiculata L. Walp.) is a legume crop that is resilient to hot and drought-prone climates, and a primary source of protein in sub-Saharan Africa and other parts of the developing world. However, genome resources for cowpea have lagged behind most other major crops. Here we describe foundational genome resources and their application to the analysis of germplasm currently in use in West African breeding programs. Resources developed from the African cultivar IT97K-499-35 include a whole-genome shotgun (WGS) assembly, a bacterial artificial chromosome (BAC) physical map, and assembled sequences from 4355 BACs. These resources and WGS sequences of an additional 36 diverse cowpea accessions supported the development of a genotyping assay for 51 128 SNPs, which was then applied to five bi-parental RIL populations to produce a consensus genetic map containing 37 372 SNPs. This genetic map enabled the anchoring of 100 Mb of WGS and 420 Mb of BAC sequences, an exploration of genetic diversity along each linkage group, and clarification of macrosynteny between cowpea and common bean. The SNP assay enabled a diversity analysis of materials from West African breeding programs. Two major subpopulations exist within those materials, one of which has significant parentage from South and East Africa and more diversity. There are genomic regions of high differentiation between subpopulations, one of which coincides with a cluster of nodulin genes. The new resources and knowledge help to define goals and accelerate the breeding of improved varieties to address food security issues related to limited-input small-holder farming and climate stress.


Assuntos
Produtos Agrícolas/genética , Produtos Agrícolas/fisiologia , Vigna/genética , Vigna/fisiologia , Cromossomos Artificiais Bacterianos , Cromossomos de Plantas/genética , Clima , Abastecimento de Alimentos , Genoma de Planta/genética , Genótipo
11.
BMC Genomics ; 18(1): 891, 2017 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-29162034

RESUMO

BACKGROUND: Cowpea (Vigna unguiculata L. Walp) is an important legume crop due to its high protein content, adaptation to heat and drought and capacity to fix nitrogen. Europe has a deficit of cowpea production. Knowledge of genetic diversity among cowpea landraces is important for the preservation of local varieties and is the basis to obtain improved varieties. The aims of this study were to explore diversity and the genetic structure of a set of Iberian Peninsula cowpea accessions in comparison to a worldwide collection and to infer possible dispersion routes of cultivated cowpea. RESULTS: The Illumina Cowpea iSelect Consortium Array containing 51,128 SNPs was used to genotype 96 cowpea accessions including 43 landraces and cultivars from the Iberian Peninsula, and 53 landraces collected worldwide. Four subpopulations were identified. Most Iberian Peninsula accessions clustered together with those from other southern European and northern African countries. Only one accession belonged to another subpopulation, while two accessions were 'admixed'. A lower genetic diversity level was found in the Iberian Peninsula accessions compared to worldwide cowpeas. CONCLUSIONS: The genetic analyses performed in this study brought some insights into worldwide genetic diversity and structure and possible dispersion routes of cultivated cowpea. Also, it provided an in-depth analysis of genetic diversity in Iberian Peninsula cowpeas that will help guide crossing strategies in breeding programs.


Assuntos
Polimorfismo de Nucleotídeo Único , Vigna/genética , Marcadores Genéticos , Técnicas de Genotipagem , Vigna/classificação
12.
Plant Biotechnol J ; 15(5): 547-557, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-27658053

RESUMO

Cowpea (V. unguiculata L. Walp) is a climate resilient legume crop important for food security. Cultivated cowpea (V. unguiculata L) generally comprises the bushy, short-podded grain cowpea dominant in Africa and the climbing, long-podded vegetable cowpea popular in Asia. How selection has contributed to the diversification of the two types of cowpea remains largely unknown. In the current study, a novel genotyping assay for over 50 000 SNPs was employed to delineate genomic regions governing pod length. Major, minor and epistatic QTLs were identified through QTL mapping. Seventy-two SNPs associated with pod length were detected by genome-wide association studies (GWAS). Population stratification analysis revealed subdivision among a cowpea germplasm collection consisting of 299 accessions, which is consistent with pod length groups. Genomic scan for selective signals suggested that domestication of vegetable cowpea was accompanied by selection of multiple traits including pod length, while the further improvement process was featured by selection of pod length primarily. Pod growth kinetics assay demonstrated that more durable cell proliferation rather than cell elongation or enlargement was the main reason for longer pods. Transcriptomic analysis suggested the involvement of sugar, gibberellin and nutritional signalling in regulation of pod length. This study establishes the basis for map-based cloning of pod length genes in cowpea and for marker-assisted selection of this trait in breeding programmes.


Assuntos
Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Vigna/genética , África , China , Regulação da Expressão Gênica de Plantas , Genética Populacional , Estudo de Associação Genômica Ampla , Variantes Farmacogenômicos
13.
Plant J ; 84(1): 216-27, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26252423

RESUMO

Barley (Hordeum vulgare L.) possesses a large and highly repetitive genome of 5.1 Gb that has hindered the development of a complete sequence. In 2012, the International Barley Sequencing Consortium released a resource integrating whole-genome shotgun sequences with a physical and genetic framework. However, because only 6278 bacterial artificial chromosome (BACs) in the physical map were sequenced, fine structure was limited. To gain access to the gene-containing portion of the barley genome at high resolution, we identified and sequenced 15 622 BACs representing the minimal tiling path of 72 052 physical-mapped gene-bearing BACs. This generated ~1.7 Gb of genomic sequence containing an estimated 2/3 of all Morex barley genes. Exploration of these sequenced BACs revealed that although distal ends of chromosomes contain most of the gene-enriched BACs and are characterized by high recombination rates, there are also gene-dense regions with suppressed recombination. We made use of published map-anchored sequence data from Aegilops tauschii to develop a synteny viewer between barley and the ancestor of the wheat D-genome. Except for some notable inversions, there is a high level of collinearity between the two species. The software HarvEST:Barley provides facile access to BAC sequences and their annotations, along with the barley-Ae. tauschii synteny viewer. These BAC sequences constitute a resource to improve the efficiency of marker development, map-based cloning, and comparative genomics in barley and related crops. Additional knowledge about regions of the barley genome that are gene-dense but low recombination is particularly relevant.


Assuntos
Cromossomos Artificiais Bacterianos/genética , Genoma de Planta/genética , Hordeum/genética , Dados de Sequência Molecular
14.
Theor Appl Genet ; 129(4): 845-859, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26875072

RESUMO

KEY MESSAGE: Barley resistance to wheat stripe rust has remained effective for a long time and, therefore, the genes underlying this resistance can be a valuable tool to engineer durable resistance in wheat. Wheat stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), is a major disease of wheat that is causing large economic losses in many wheat-growing regions of the world. Deployment of Pst resistance genes has been an effective strategy for controlling this pathogen, but many of these genes have been defeated by new Pst races. In contrast, genes providing resistance to this wheat pathogen in other grass species (nonhost resistance) have been more durable. Barley varieties (Hordeum vulgare ssp. vulgare) are predominately immune to wheat Pst, but we identified three accessions of wild barley (Hordeum vulgare ssp. spontaneum) that are susceptible to Pst. Using these accessions, we mapped a barley locus conferring resistance to Pst on the distal region of chromosome arm 7HL and designated it as Rps6. The detection of the same locus in the cultivated barley 'Tamalpais' and in the Chinese barley 'Y12' by an allelism test suggests that Rps6 may be a frequent component of barley intermediate host resistance to Pst. Using a high-density mapping population (>10,000 gametes) we precisely mapped Rps6 within a 0.14 cM region (~500 kb contig) that is colinear to regions in Brachypodium (<94 kb) and rice (<9 kb). Since no strong candidate gene was identified in these colinear regions, a dedicated positional cloning effort in barley will be required to identify Rps6. The identification of this and other barley genes conferring resistance to Pst can contribute to our understanding of the mechanisms for durable resistance against this devastating wheat pathogen.


Assuntos
Resistência à Doença/genética , Genes de Plantas , Hordeum/genética , Doenças das Plantas/genética , Basidiomycota , Brachypodium/genética , Mapeamento Cromossômico , Cromossomos de Plantas , DNA de Plantas/genética , Ligação Genética , Marcadores Genéticos , Genótipo , Hordeum/microbiologia , Doenças das Plantas/microbiologia , Locos de Características Quantitativas
15.
Plant Cell Physiol ; 56(12): 2312-24, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26443377

RESUMO

Flowering time, vernalization requirement, photoperiod sensitivity and low temperature tolerance are key traits in the Triticeae. We characterized a set of isogenic genetic stocks-representing single and pairwise substitutions of spring alleles at the VRN-H1, VRN-H2 and VRN-H3 loci in a winter barley background-at the structural, functional and phenotypic levels. High density mapping with reference to the barley genome sequence confirmed that in all cases target VRN alleles were present in the near isogenic lines (NILs) and allowed estimates of introgression size (at the genetic and physical levels) and gene content. Expression data corroborated the structural and phenotypic results. The latter confirmed that substitution of a spring allele at any of the VRN loci is sufficient to eliminate vernalization requirement. There was no significant change in low temperature tolerance with substitution of a spring allele at VRN-H2, but there were significant losses in cold tolerance with substitutions at VRN-H1 and VRN-H3. Reductions in cold tolerance are ascribed to an accelerated transition from the vegetative to reproductive state. The set of NILs will be a rich resource for understanding the genetics of vernalization, low temperature tolerance and other traits encoded/regulated by genes within the introgressed intervals.


Assuntos
Adaptação Fisiológica , Temperatura Baixa , Flores/fisiologia , Hordeum/crescimento & desenvolvimento , Hordeum/fisiologia , Adaptação Fisiológica/genética , Alelos , Congelamento , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Genótipo , Hordeum/genética , Endogamia , Reprodução , Fatores de Tempo
16.
Plant J ; 76(4): 718-27, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23998490

RESUMO

Next-generation whole-genome shotgun assemblies of complex genomes are highly useful, but fail to link nearby sequence contigs with each other or provide a linear order of contigs along individual chromosomes. Here, we introduce a strategy based on sequencing progeny of a segregating population that allows de novo production of a genetically anchored linear assembly of the gene space of an organism. We demonstrate the power of the approach by reconstructing the chromosomal organization of the gene space of barley, a large, complex and highly repetitive 5.1 Gb genome. We evaluate the robustness of the new assembly by comparison to a recently released physical and genetic framework of the barley genome, and to various genetically ordered sequence-based genotypic datasets. The method is independent of the need for any prior sequence resources, and will enable rapid and cost-efficient establishment of powerful genomic information for many species.


Assuntos
Mapeamento de Sequências Contíguas/métodos , Genoma de Planta , Genômica/métodos , Hordeum/genética , Análise de Sequência de DNA , Genética Populacional
17.
Plants (Basel) ; 13(13)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38999658

RESUMO

This manuscript reviews two decades of projects funded by the Kirkhouse Trust (KT), a charity registered in the UK. KT was established to improve the productivity of legume crops important in African countries and in India. KT's requirements for support are: (1) the research must be conducted by national scientists in their home institution, either a publicly funded agricultural research institute or a university; (2) the projects need to include a molecular biology component, which to date has mostly comprised the use of molecular markers for the selection of one or more target traits in a crop improvement programme; (3) the projects funded are included in consortia, to foster the creation of scientific communities and the sharing of knowledge and breeding resources. This account relates to the key achievements and challenges, reflects on the lessons learned and outlines future research priorities.

18.
G3 (Bethesda) ; 14(6)2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38708794

RESUMO

Cowpea is a highly drought-adapted leguminous crop with great promise for improving agricultural sustainability and food security. Here, we report analyses derived from array-based genotyping of 2,021 accessions constituting a core subset of the world's largest cowpea collection, held at the International Institute of Tropical Agriculture (IITA) in Ibadan, Nigeria. We used this dataset to examine genetic variation and population structure in worldwide cowpea. We confirm that the primary pattern of population structure is two geographically defined subpopulations originating in West and East Africa, respectively, and that population structure is associated with shifts in phenotypic distribution. Furthermore, we establish the cowpea core collection as a resource for genome-wide association studies by mapping the genetic basis of several phenotypes, with a focus on seed coat pigmentation patterning and color. We anticipate that the genotyped IITA Cowpea Core Collection will serve as a powerful tool for mapping complex traits, facilitating the acceleration of breeding programs to enhance the resilience of this crop in the face of rapid global climate change.


Assuntos
Variação Genética , Genótipo , Fenótipo , Vigna , Vigna/genética , Estudo de Associação Genômica Ampla/métodos , Polimorfismo de Nucleotídeo Único , Genoma de Planta , Locos de Características Quantitativas , Genética Populacional
19.
Mol Nutr Food Res ; 68(4): e2300222, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38233141

RESUMO

SCOPE: Legumes consumption has been proven to promote health across the lifespan; cowpeas have demonstrated efficacy in combating childhood malnutrition and growth faltering, with an estimated malnutrition prevalence of 35.6% of children in Ghana. This cowpea feeding study aimed to identify a suite of metabolic consumption biomarkers in children and adults. METHODS AND RESULTS: Urine and dried blood spots (DBS) from 24 children (9-21 months) and 21 pregnant women (>18 years) in Northern Ghana are collected before and after dose-escalated consumption of four cowpea varieties for 15 days. Untargeted metabolomics identified significant increases in amino acids, phytochemicals, and lipids. The carnitine metabolism pathway is represented by 137 urine and 43 DBS metabolites, with significant changes to tiglylcarnitine and acetylcarnitine. Additional noteworthy candidate biomarkers are mansouramycin C, N-acetylalliin, proline betaine, N2, N5-diacetylornithine, S-methylcysteine, S-methylcysteine sulfoxide, and cis-urocanate. S-methylcysteine and S-methylcysteine sulfoxide are targeted and quantified in urine. CONCLUSION: This feeding study for cowpea biomarkers supports the utility of a suite of key metabolites classified as amino acids, lipids, and phytochemicals for dietary legume and cowpea-specific food exposures of global health importance.


Assuntos
Cisteína/análogos & derivados , Fabaceae , Desnutrição , Vigna , Criança , Adulto , Humanos , Feminino , Gravidez , Aminoácidos , Gestantes , Promoção da Saúde , Carnitina , Verduras , Metabolômica/métodos , Lipídeos , Compostos Fitoquímicos , Biomarcadores/urina
20.
Plant Genome ; 17(1): e20319, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36946261

RESUMO

Cowpea, Vigna unguiculata L. Walp., is a diploid warm-season legume of critical importance as both food and fodder in sub-Saharan Africa. This species is also grown in Northern Africa, Europe, Latin America, North America, and East to Southeast Asia. To capture the genomic diversity of domesticates of this important legume, de novo genome assemblies were produced for representatives of six subpopulations of cultivated cowpea identified previously from genotyping of several hundred diverse accessions. In the most complete assembly (IT97K-499-35), 26,026 core and 4963 noncore genes were identified, with 35,436 pan genes when considering all seven accessions. GO terms associated with response to stress and defense response were highly enriched among the noncore genes, while core genes were enriched in terms related to transcription factor activity, and transport and metabolic processes. Over 5 million single nucleotide polymorphisms (SNPs) relative to each assembly and over 40 structural variants >1 Mb in size were identified by comparing genomes. Vu10 was the chromosome with the highest frequency of SNPs, and Vu04 had the most structural variants. Noncore genes harbor a larger proportion of potentially disruptive variants than core genes, including missense, stop gain, and frameshift mutations; this suggests that noncore genes substantially contribute to diversity within domesticated cowpea.


Assuntos
Fabaceae , Vigna , Vigna/genética , Genoma de Planta , Genes de Plantas , Fabaceae/genética , Locos de Características Quantitativas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA