Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Phytopathology ; 109(5): 748-759, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30522386

RESUMO

Downy mildew caused by Plasmopara viticola is probably the most serious disease affecting grapevine (Vitis vinifera), and it is capable of causing consistent yield losses. In organic viticulture, the only acceptable and effective means to control the disease is by applications of copper-based fungicides. However, the use of copper in agriculture is expected to be further restricted by European countries because of its critical ecotoxicological and phytotoxicological profile. Research on ways to reduce the effective amounts of copper by developing innovative formulations as well as optimization of the distribution and persistence of copper-based pesticides for downy mildew control seems to be a promising approach. This research investigated the delivery properties of biomimetic synthetic hydroxyapatite (HA) to enhance the biological activity of Cu(II) ions. To this aim, four Cu(II) compounds were formulated with the innovative HA component and applied in an in vitro antifungal assay against Botrytis cinerea, a common grapevine pathogen suitable for in vitro activity tests, and finally, in in planta efficacy assays against P. viticola under greenhouse conditions. The in vitro results highlighted a different inhibition activity for each Cu(II) compound and indicated a different interaction between the cupric compounds and HA, potentially related to different delivery mechanisms of Cu(II) from HA. Under greenhouse conditions, additional findings on the biological activity of the applied formulations were gained, especially on the efficacy of various concentrations of HA in the formulations, the influence of dose variation of the formulation and the treatment efficiency, and the persistence under rain-washing effect. This study revealed promising findings on the formulation based on the HA particles and the soluble Cu(II) compound, which resulted in reduced disease severity and incidence in all of the experimental conditions, including the lower Cu(II) dosage and the rain-washing effect. This suggests that coformulation of the three insoluble Cu(II) compounds with HA might significantly enhance the adsorption and release of Cu(II) ions by HA particles.


Assuntos
Cobre/farmacologia , Oomicetos/patogenicidade , Doenças das Plantas/prevenção & controle , Vitis/microbiologia , Durapatita , Íons , Nanoestruturas , Doenças das Plantas/microbiologia
2.
Plant Dis ; 102(7): 1189-1217, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30673583

RESUMO

Grapevine trunk diseases (GTDs) represent one of the most important problems for viticulture worldwide. Beyond the original causes of this outbreak in some countries like France, the lack of efficient control protocols and the prohibition of using active ingredients such as sodium arsenite and benzimidazoles, until recently used to reduce the impact of some GTDs but deleterious for humans and the environment, have probably worsened the impact of the diseases, leading to increasing economic losses. Since 1990, searches have been made to find efficient tools to control GTDs, testing a wide range of active ingredients and biocontrol agents. This review provides readers with an overview of the results reported in the scientific literature over the last 15 years. In particular, the review focuses on the trials carried out applying chemicals or microorganisms to control Esca complex diseases, Botryosphaeria dieback, and Eutypa dieback, the most widespread GTDs.


Assuntos
Ascomicetos/fisiologia , Doenças das Plantas/microbiologia , Vitis/microbiologia , Madeira/microbiologia , Antibiose/fisiologia , Ascomicetos/classificação , Ascomicetos/efeitos dos fármacos , França , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Compostos Inorgânicos/farmacologia , Compostos Orgânicos/farmacologia
3.
Phytopathology ; 107(11): 1406-1416, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28569125

RESUMO

Phyllosticta ampelicida causes black rot disease of Vitis spp. Genetic homogeneity of pathogen populations was investigated by analyzing the number of haplotypes present in infected samples from Europe and America. The fungus was identified from an analysis of the internal transcribed spacer (ITS)1-ITS2 region, and partial sequences of ß-tubulin and calmodulin genes. The analysis of nuclear microsatellites applied to strains from Vitis spp. confirmed the existence of a high degree of genetic variability in the fungal populations, revealed four subpopulations, and showed that strains from America are distinct from the European ones. Furthermore, the results obtained by landscape genetics showed that there were different introductions of the pathogen in the main vine areas of Europe, confirming what was observed in the first reports of the disease. The genetic variability of the fungus revealed by this study confirms the ability to generate new haplotypes by sexual reproduction. The difference found between the European populations and the American one confirms that the pathogen originated from America.


Assuntos
Ascomicetos/genética , Variação Genética , Doenças das Plantas/microbiologia , Vitis/microbiologia , DNA Fúngico/genética , Filogenia
4.
Front Plant Sci ; 14: 1117498, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37546263

RESUMO

Plant pathogens pose a persistent threat to grape production, causing significant economic losses if disease management strategies are not carefully planned and implemented. Simulation models are one approach to address this challenge because they provide short-term and field-scale disease prediction by incorporating the biological mechanisms of the disease process and the different phenological stages of the vines. In this study, we developed a Bayesian model to predict the probability of Plasmopara viticola infection in grapevines, considering various disease management approaches. To aid decision-making, we introduced a multi-attribute utility function that incorporated a sustainability index for each strategy. The data used in this study were derived from trials conducted during the production years 2018-2020, involving the application of five disease management strategies: conventional Integrated Pest Management (IPM), conventional organic, IPM with substantial fungicide reduction combined with host-defense inducing biostimulants, organic management with biostimulants, and the use of biostimulants only. Two scenarios were considered, one with medium pathogen pressure (Average) and another with high pathogen pressure (Severe). The results indicated that when sustainability indexes were not considered, the conventional IPM strategy provided the most effective disease management in the Average scenario. However, when sustainability indexes were included, the utility values of conventional strategies approached those of reduced fungicide strategies due to their lower environmental impact. In the Severe scenario, the application of biostimulants alone emerged as the most effective strategy. These results suggest that in situations of high disease pressure, the use of conventional strategies effectively combats the disease but at the expense of a greater environmental impact. In contrast to mechanistic-deterministic approaches recently published in the literature, the proposed Bayesian model takes into account the main sources of heterogeneity through the two group-level effects, providing accurate predictions, although precise estimates of random effects may require larger samples than usual. Moreover, the proposed Bayesian model assists the agronomist in selecting the most effective crop protection strategy while accounting for induced environmental side effects through customizable utility functions.

5.
Environ Sci Pollut Res Int ; 30(13): 39131-39141, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36595170

RESUMO

Sustainability and circular economy are increasingly pushing for the search of natural materials to foster antiparasitic treatments, especially in the case of economically relevant agricultural cultivations, such as grapevine. In this work, we propose to deliver neem oil, a natural biopesticide loaded into novel nanovectors (nanocapsules) which were fabricated using a scalable procedure starting from Kraft lignin and grapeseed tannins. The obtained formulations were characterized in terms of size and Zeta potential, showing that almost all the nanocapsules had size in the suitable range for delivery purposes (mean diameter 150-300 nm), with low polydispersity and sufficient stability to ensure long shelf life. The target microorganisms were three reference fungal pathogens of grapevine (Botrytis cinerea, Phaeoacremonium minimum, Phaeomoniella chlamydospora), responsible for recurrent diseases on this crop: grey mold or berry rot by B. cinerea and diseases of grapevine wood within the Esca complex of diseases. Results showed that grapeseed tannins did not promote inhibitory effects, either alone or in combination with Kraft lignin. On the contrary, the efficacy of neem oil against P. minimum was boosted by more than 1-2 orders of magnitude and the parasite growth inhibition was higher with respect to a widely used commercial pesticide, while no additional activity was detected against P. chlamydospora and B. cinerea.


Assuntos
Fungicidas Industriais , Nanocápsulas , Fungicidas Industriais/farmacologia , Taninos , Lignina , Doenças das Plantas/prevenção & controle , Doenças das Plantas/microbiologia
6.
J Fungi (Basel) ; 9(4)2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-37108951

RESUMO

Fomitiporia mediterranea (Fmed) is the primary Basidiomycota species causing white rot in European vineyards affected by the Esca complex of diseases (ECD). In the last few years, an increasing number of studies have highlighted the importance of reconsidering the role of Fmed in ECD etiology, justifying an increase in research interest related to Fmed's biomolecular pathogenetic mechanisms. In the context of the current re-evaluation of the binary distinction (brown vs. white rot) between biomolecular decay pathways induced by Basidiomycota species, our research aims to investigate the potential for non-enzymatic mechanisms adopted by Fmed, which is typically described as a white rot fungus. Our results demonstrate how, in liquid culture reproducing nutrient restriction conditions often found in wood, Fmed can produce low molecular weight compounds, the hallmark of the non-enzymatic "chelator-mediated Fenton" (CMF) reaction, originally described for brown rot fungi. CMF reactions can redox cycle with ferric iron, generating hydrogen peroxide and ferrous iron, necessary reactants leading to hydroxyl radical (•OH) production. These observations led to the conclusion that a non-enzymatic radical-generating CMF-like mechanism may be utilized by Fmed, potentially together with an enzymatic pool, to contribute to degrading wood constituents; moreover, indicating significant variability between strains.

7.
BMC Genom Data ; 23(1): 11, 2022 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-35164670

RESUMO

BACKGROUND: Emerging wheat stem rust races have become a major threat to global wheat production. Finding additional loci responsible for resistance to these races and incorporating them into currently cultivated varieties is the most economic and environmentally sound strategy to combat this problem. Thus, this study was aimed at characterizing the genetic diversity and identifying the genetic loci conferring resistance to the stem rust of wheat. To accomplish this, 245 elite lines introduced from the International Center for Agricultural Research in the Dry Areas (ICARDA) were evaluated under natural stem rust pressure in the field at the Debre Zeit Agricultural Research Center, Ethiopia. The single nucleotide polymorphisms (SNP) marker data was retrieved from a 15 K SNP wheat array. A mixed linear model was used to investigate the association between SNP markers and the best linear unbiased prediction (BLUP) values of the stem rust coefficient of infection (CI). RESULTS: Phenotypic analysis revealed that 46% of the lines had a coefficient of infection (CI) in a range of 0 to 19. Genome-wide average values of 0.38, 0.20, and 0.71 were recorded for Nei's gene diversity, polymorphism information content, and major allele frequency, respectively. A total of 46 marker-trait associations (MTAs) encompassed within eleven quantitative trait loci (QTL) were detected on chromosomes 1B, 3A, 3B, 4A, 4B, and 5A for CI. Two major QTLs with -log10 (p) ≥ 4 (EWYP1B.1 and EWYP1B.2) were discovered on chromosome 1B. CONCLUSIONS: This study identified several novel markers associated with stem rust resistance in wheat with the potential to facilitate durable rust resistance development through marker-assisted selection. It is recommended that the resistant wheat genotypes identified in this study be used in the national wheat breeding programs to improve stem rust resistance.


Assuntos
Basidiomycota , Resistência à Doença , Basidiomycota/genética , Pão , Resistência à Doença/genética , Estudo de Associação Genômica Ampla , Melhoramento Vegetal , Doenças das Plantas/genética , Locos de Características Quantitativas/genética , Triticum/genética
8.
Front Plant Sci ; 13: 872333, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35463401

RESUMO

Phomopsis cane and leaf spot (PCLS), known in Europe as "excoriose," is an important fungal disease of grapevines caused by Diaporthe spp., and most often by Diaporthe ampelina (synonym Phomopsis viticola). PCLS is re-emerging worldwide, likely due to climate change, changes in the management of downy mildew from calendar- to risk-based criteria that eliminate early-season (unnecessary) sprays, and the progressive reduction in the application of broad-spectrum fungicides. In this study, a mechanistic model for D. ampelina infection was developed based on published information. The model accounts for the following processes: (i) overwintering and maturation of pycnidia on affected canes; (ii) dispersal of alpha conidia to shoots and leaves; (iii) infection; and (iv) onset of disease symptoms. The model uses weather and host phenology to predict infection periods and disease progress during the season. Model output was validated against 11 independent PCLS epidemics that occurred in Italy (4 vineyards in 2019 and 2020) and Montenegro (3 vineyards in 2020). The model accurately predicted PCLS disease progress, with a concordance correlation coefficient (CCC) = 0.925 between observed and predicted data. A ROC analysis (AUROC>0.7) confirmed the ability of the model to predict the infection periods leading to an increase in PCLS severity in the field, indicating that growers could use the model to perform risk-based fungicide applications.

9.
Front Microbiol ; 13: 844264, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35369524

RESUMO

Fomitiporia mediterranea is a Basidiomycetes fungus associated with some of the Esca complex diseases and responsible for decay in grapevine wood. Its role in the onset of foliar symptoms has recently been reconsidered, mainly after evidence showing a reduction in foliar symptom expression after removal of rotten wood. The study of its degradation pathways has already been approached by other authors, and with this study much information is consolidated. A microscopic observation of degraded wood provides a first approach to the characterization of F. mediterranea modalities of wood cellular structure degradation. The decay of grapevine wood was reproduced in vitro, and the measurement of each wood-forming polymer loss highlighted characteristics of F. mediterranea common to selective white rot and showed how fungal strain and vine variety are factors determining the wood degradation. All these observations were supported by the analysis of the laccase and manganese peroxidase enzyme activity, as well as by the expression of the genes coding 6 putative laccase isoforms and 3 manganese peroxidase isoforms, thereby highlighting substantial intraspecific variability.

10.
Front Plant Sci ; 13: 1006835, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36275539

RESUMO

Grapevine grafting is an essential practice in viticulture and over the years, various bench grafting techniques have been developed to mechanize the nursery process and to increase the yield in number of viable cuttings. Bench grafting is a fundamental nursery practice that can potentially affect the quality of propagation material also in young decline associated to grapevine trunk diseases and has been recently reported to influence leaf symptoms development associated with diseases of Esca complex. The study aimed to investigate how three bench grafting methods [i.e., (i) Omega graft as mechanical technique, (ii) Whip and Tongue graft as manual technique and (iii) Full Cleft graft as semi-mechanical technique] can influence these phenomena. Specifically, the different methods were compared for their effect on the anatomical development of the grafting point and the functionality of the xylem, also considering two factors: the grapevine cultivar (Cabernet Sauvignon, Glera and Teroldego) and the scion/rootstock diameter (thin and large). Observations by light microscopy on the anatomical evolution and measurements on the xylem morphology and hydraulic traits were correlated with the grafting methods and the investigated varieties. The anatomical observations revealed that the mechanical (Omega) and semi-mechanical (Full Cleft) grafting methods have a faster callusing response while the manual technique (Whip and Tongue) has a slower but greater vascularization of the differentiated callus. Significant differences between cultivars and/or grafting types were also detected in necrotic area on the grafted tissues. Statistical analysis of the grapevine vessels suggested differences in xylem parameters between cultivars, while grafting type had no significant effects. On the other hand, the grafting type significantly affected the intrinsic growth rate. The study confirms the potential incidence of lesions and dysfunctionalities correlated with the grafting method applied, which can potentially induce grafted vine declines in vineyards due to the necrotic area detected on the grafted tissues.

11.
Front Plant Sci ; 13: 921961, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35909746

RESUMO

Eutypa dieback and Esca complex are fungal diseases of grape that cause large economic losses in vineyards. These diseases require, or are enhanced by, fungal consortia growth which leads to the deterioration of the wood tissue in the grapevine trunk; however, pathogenesis and the underlying mechanisms involved in the woody tissue degradation are not understood. We examined the role that the consortia fungal metabolome have in generating oxygen radicals that could potentially play a role in trunk decay and pathogenesis. Unique metabolites were isolated from the consortia fungi with some metabolites preferentially reducing iron whereas others were involved in redox cycling to generate hydrogen peroxide. Metabolite suites with different functions were produced when fungi were grown separately vs. when grown in consortia. Chelator-mediated Fenton (CMF) chemistry promoted by metabolites from these fungi allowed for the generation of highly reactive hydroxyl radicals. We hypothesize that this mechanism may be involved in pathogenicity in grapevine tissue as a causal mechanism associated with trunk wood deterioration/necrosis in these two diseases of grape.

12.
J Fungi (Basel) ; 7(7)2021 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-34210025

RESUMO

In the last few years, trunk surgery has gained increasing attention as a method to reduce foliar symptoms typical of some of the Esca complex diseases. The technique relies on the mechanical removal of decayed wood by a chainsaw. A study on a 14-year-old Cabernet Sauvignon vineyard was carried out to validate the efficacy of trunk surgery and explore possible explanations behind it. Three levels of treatment were applied to three of the most characteristic symptoms associated with some diseases of the Esca complex, such as leaf stripe symptoms (LS), wilted shoots (WS) and apoplexy (APP). The most promising results were obtained by complete trunk surgery, where the larger decay removal allowed lower symptom re-expression. According to the wood types analyzed (decay, medium and sound wood), different changes in microbiota were observed. Alpha-diversity generally decreased for bacteria and increased for fungi. More specifically, main changes were observed for Fomitiporia mediterranea abundance that decreased considerably after trunk surgery. A possible explanation for LS symptom reduction after trunk surgery could be the microbiota shifting caused by the technique itself affecting a microbic-shared biochemical pathway involved in symptom expression.

13.
Front Plant Sci ; 12: 649694, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33790931

RESUMO

Grapevine trunk diseases (GTDs) are a serious and growing threat to vineyards worldwide. The need for innovative control tools persists since pesticides used against some GTDs have been banned and only methods to prevent infections or to reduce foliar symptoms have been developed so far. In this context, the application of imaging methods, already applied to study plant-microbe interactions, represents an interesting approach to understand the effect of experimental treatments applied to reduce fungal colonization, on GTD-related pathogens activity. To this aim, trials were carried out to evaluate the efficacy of copper-based treatments, formulated with hydroxyapatite (HA) as co-adjuvant with innovative delivery properties, loaded with two different copper(II) compounds (tribasic sulfate and sulfate pentahydrate), and applied to grapevine propagation material to inhibit fungal wood colonization. The treated rootstock (Vitis berlandieri × Vitis riparia cv. K5BB) and scion cuttings (Vitis vinifera L., cv. Chardonnay) had been inoculated with a strain of Phaeoacremonium minimum (Pmi) compared to uninoculated rootstocks. Experimental treatments were applied during the water-soaking process, comparing the copper(II) compounds pure or formulated with HA, to hydrate the cuttings. After callusing, grafted vines were grown under greenhouse conditions in a nursery and inoculated with Pmi::gfp7 or with Pmi wild-type. Fifteen weeks post-inoculation, woody tissues close to the inoculation site were sampled to evaluate the efficiency of the treatments by studying the plant-microbe interaction by confocal laser scanning microscopy (CLSM). Copper and further elements were also quantified in the same tissues immediately after the treatments and on the CLSM samples. Finally, the grapevine defense responses were studied in the leaves of cuttings treated with the same formulations. The present investigation confirmed the relevant interaction of Pmi and the related transformed strain on the vascular tissues of grafted vines. Furthermore, in vitro assay revealed (i) the fungistatic effect of HA and the reduced effect of Cu fungicide when combined with HA. In planta assays showed (ii) the reduction of Pmi infection in propagation material treated with HA-Cu formulations, (iii) the movement of HA-Cu formulations inside the plant tissues and their persistence over time, and (iv) the plant defense reaction following the treatment with pure HA or Cu, or combined.

14.
Nat Prod Res ; 35(17): 2872-2880, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31674838

RESUMO

Grapevine trunk diseases (GTDs) are one of the most serious biotic stresses affecting this important crop. Among them a range of diseases were identified and associated to a plethora of phytopathogenic fungi, including species of Diaporthe. Diaporthe eres was recently identified as one of the species involved in cane blight of grapevine. The ability of a strain of this fungus isolated from infected grapevine plant in Italy to produce in vitro phytotoxic metabolites was investigated. Five phytotoxic metabolites were identified by their physical and spectroscopic properties as 4-hydroxybenzaldehyde, 4-hydroxybenzoic acid, nectriapyrone, p-cresol and tyrosol. When tested on grapevine leaf disks and by leaf absorption, 4-hydroxybenzoic acid induced symptoms on both disks and leaves, 4-hydroxybenzaldehyde and p-cresol showed, respectively, phytotoxicity on leaf disks and on the leaf absorption bioassay.


Assuntos
Ascomicetos , Doenças das Plantas/microbiologia , Vitis , Ascomicetos/química , Itália , Folhas de Planta , Vitis/microbiologia
15.
Front Microbiol ; 12: 813410, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35154039

RESUMO

Grapevine trunk diseases are widespread in all grape-growing countries. The diseases included in the Esca complex of diseases are particularly common in European vineyards. Their distinctive foliar symptoms are well known to be associated not only with losses in quantity, as with all grapevine wood diseases, but also with losses in the quality of the crop. Protection of pruning wounds is known to reduce infections in artificial inoculations and, to some extent, reduce the external leaf symptoms. The application of biological control agents in the field is typically started at the first appearance of symptoms. In this article, the two strains belonging to two different species, Trichoderma asperellum ICC 012 and T. gamsii ICC 080, which are present in a commercial formulation, were tested in vitro, in vivo in artificial inoculation, and in the field in long-term experiments where the wounds on four young asymptomatic vineyards were protected since 1 or 2 years after planting. The in vitro trials highlighted the different temperature requirements of the two strains, the direct mycoparasitizing activity of T. asperellum, and the indirect activity shown by both Trichoderma strains. The in vivo trials confirmed the ability of the two strains to reduce the colonization following artificial inoculations with the high, unnatural concentration of spores used in artificial infections, even if with variable efficacy, and with long persistence as they could be reisolated 7 months post-application. The preventive applications carried out over 9 years showed a very high reduction in symptom development in the treated vines, on annual and cumulated incidence and on the death of vines, with disease reduction varying from 66 to almost 90%. Early and annual application of protection to the pruning wounds appears to be the best method for reducing damages caused by grapevine leaf stripe disease (a disease of the Esca complex of diseases). Trichoderma appears to offer an efficient, environmentally friendly, and long-lasting protection in the presence of a natural inoculum concentration.

16.
J Agric Food Chem ; 66(24): 5948-5958, 2018 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-29630361

RESUMO

Grapevines are produced worldwide with important impact on local economies. Several biotic stresses induce serious diseases of grapevine, which severely affect the quantity and quality of production. One of the most important problems of vineyards worldwide is the high incidence of grapevine trunk diseases (GTD) induced by fungi belonging to several genera. Environmentally friendly methods for GTD control are being studied. This perspective offers an advanced overview on the fungal phytotoxins involved in GTD and their eventual role in the development of disease symptoms.


Assuntos
Ascomicetos/metabolismo , Micotoxinas/toxicidade , Doenças das Plantas/microbiologia , Vitis/efeitos dos fármacos , Ascomicetos/química , Micotoxinas/análise , Micotoxinas/metabolismo , Vitis/crescimento & desenvolvimento , Vitis/microbiologia
17.
Pest Manag Sci ; 74(8): 1903-1915, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29457695

RESUMO

BACKGROUND: The present study evaluated a biocompatible material for plant protection with the aim of reducing the amount of active substance applied. We used a synthetic hydroxyapatite (HA) that has been studied extensively as a consequence of its bioactivity and biocompatibility. An aggregation between HA nanoparticles and four Cu(II) compounds applied to Vitis vinifera L. leaves as a pesticide was studied. Formulations were characterized by X-ray diffraction (XRD), dynamic light scattering (DLS) and electron microscopy and applied in planta to verify particle aggregation and efficiency in controlling the pathogen Plasmopara viticola. RESULTS: The XRD patterns showed different crystalline phases dependig on the Cu(II) compound formulated with HA particles, DLS showed that nanostructured particles are stable as aggregates out of the nanometer range and, in all formulations, transmission electron microscopy (TEM) and environmental scanning electron microscopy (ESEM) microscopy showed large aggregates which were partially nanostructured and were recognized as stable in their micrometric dimensions. Such particles did not show phytotoxic effects after their application in planta. CONCLUSION: A formulation based on HA and a soluble Cu(II) compound showed promising results in the control of the fungal pathogen, confirming the potential role of HA as an innovative delivery system of Cu(II) ions. The present work indicates the possibility of improving the biological activity of a bioactive substance by modifying its structure through an achievable formulation with a biocompatible material. © 2018 Society of Chemical Industry.


Assuntos
Cobre/farmacologia , Durapatita/farmacologia , Fungicidas Industriais/farmacologia , Nanopartículas Metálicas , Oomicetos/efeitos dos fármacos , Doenças das Plantas/prevenção & controle , Vitis/microbiologia , Difusão Dinâmica da Luz , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Doenças das Plantas/microbiologia , Folhas de Planta/microbiologia , Difração de Raios X
18.
J Agric Food Chem ; 65(6): 1102-1107, 2017 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-28110532

RESUMO

Phytotoxic metabolites produced in liquid culture by six species of Lasiodiplodia isolated in Brazil and causing Botryosphaeria dieback of grapevine were chemically identified. As ascertained by LC/MS, L. brasiliense, L. crassispora, L. jatrophicola, and L. pseudotheobromae produced jasmonic acid, and L. brasiliense synthesized, besides jasmonic acid, also (3R,4S)-4-hydroxymellein. L. euphorbicola and L. hormozganensis produced some low molecular weight lipophilic toxins. Specifically, L. euphorbicola produced (-)-mellein, (3R,4R)-(-)- and (3R,4S)-(-)-4-hydroxymellein, and tyrosol, and L. hormozganensis synthesized tyrosol and p-hydroxybenzoic acid. This is the first report on the production of the above cited metabolites from L. euphorbicola and L. hormozganensis. The phytotoxic activity of the metabolites produced is also discussed and related to the symptoms these pathogens cause in the grapevine host plants.


Assuntos
Ascomicetos/metabolismo , Micotoxinas/metabolismo , Vitis/microbiologia , Ascomicetos/química , Ascomicetos/patogenicidade , Brasil , Cromatografia Líquida de Alta Pressão , Ciclopentanos/metabolismo , Isocumarinas/metabolismo , Espectroscopia de Ressonância Magnética , Peso Molecular , Micotoxinas/química , Ocratoxinas/metabolismo , Oxilipinas/metabolismo , Parabenos/metabolismo , Álcool Feniletílico/análogos & derivados , Álcool Feniletílico/metabolismo , Doenças das Plantas/microbiologia , Espectrometria de Massas por Ionização por Electrospray
19.
Nat Prod Commun ; 11(10): 1481-1484, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30549603

RESUMO

This paper reports the isolation and chemical and biological characterization of exopolysaccharides produced by phytopathogenic fungi belonging to different genera and inducing various diseases on grapevine. Their role in the phytopathogenic processes is also discussed.


Assuntos
Fungos/química , Doenças das Plantas/microbiologia , Polissacarídeos/química , Polissacarídeos/toxicidade , Vitis/microbiologia , Ascomicetos/química , Modelos Moleculares , Micotoxinas/química , Relação Estrutura-Atividade , Nicotiana/microbiologia
20.
Toxins (Basel) ; 3(12): 1569-605, 2011 12.
Artigo em Inglês | MEDLINE | ID: mdl-22295177

RESUMO

Up to 60 species of fungi in the Botryosphaeriaceae family, genera Cadophora, Cryptovalsa, Cylindrocarpon, Diatrype, Diatrypella, Eutypa, Eutypella, Fomitiporella, Fomitiporia, Inocutis, Phaeoacremonium and Phaeomoniella have been isolated from decline-affected grapevines all around the World. The main grapevine trunk diseases of mature vines are Eutypa dieback, the esca complex and cankers caused by the Botryospheriaceae, while in young vines the main diseases are Petri and black foot diseases. To understand the mechanism of these decline-associated diseases and the symptoms associated with them, the toxins produced by the pathogens involved in these diseases were isolated and characterised chemically and biologically. So far the toxins of only a small number of these decline fungi have been studied. This paper presents an overview of the toxins produced by the most serious of these vine wood pathogens: Eutypa lata, Phaeomoniella chlamydospora, Phaeoacremonium aleophilum and some taxa in the Botryosphaeriaceae family, and examines how these toxins produce decline symptoms. The chemical structure of these metabolites and in some cases their vivotoxin nature are also discussed.


Assuntos
Ascomicetos/patogenicidade , Basidiomycota/patogenicidade , Micotoxinas/toxicidade , Doenças das Plantas/microbiologia , Vitis/microbiologia , Micotoxinas/biossíntese , Micotoxinas/química , Relação Estrutura-Atividade , Fatores de Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA