Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 26(20): 14960-14969, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38739165

RESUMO

Anaerobic thermal-assisted photocatalytic methanol conversion in the gas phase in the presence of water vapor has been suggested as an interesting way to generate formaldehyde as a valuable coupled product in addition to H2 production. Here, the reaction mechanism and photocatalyst deactivation are investigated in detail using in situ diffuse reflectance infrared fourier transform (DRIFTS) and electron paramagnetic resonance (EPR) spectroscopy. EPR shows that paramagnetic oxygen vacancies are not involved in the reaction mechanism over undoped SrTiO3. Instead, on an optimized 0.1 wt% Pt/SrTiO3 photocatalyst, methoxy species are formed by dissociative adsorption of methanol leading to formaldehyde formation while the formation of CO, CO2 (via a formate intermediate) and methyl formate occurs through three concurrent reactions from formyl species. Our findings suggest that CO adsorbed on Pt is a spectator species not perturbing the reaction kinetics, and deactivation is shown to be strongly correlated with the accumulation of formate groups on SrTiO3, which is more pronounced at high reaction temperatures. The mechanistic understanding provided here forms the basis for the further optimization of photocatalysts to increase methanol conversion and improve formaldehyde selectivity.

2.
ChemSusChem ; 17(14): e202400094, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-38635873

RESUMO

The sustainable synthesis of long carbon chain molecules from carbon dioxide, water and electricity relies on the development of waste-free, highly selective C-C bond forming reactions. An example for such a power-to-chemicals process is the industrial-scale fermentation for the production of hexanoic acid. Herein, we describe how this product is transformed into 6-undecanone via decarboxylative ketonization using a heterogeneous manganese oxide/silica catalyst. The reaction reaches full conversion with near-complete selectivity when carried out in a continuous flow reactor, requires no solvent or carrier gas, and releases carbon dioxide and water as the only by-products. The reactor was operated for several weeks with no loss of reactivity, producing 7 kg of 6-undecanone from 10 g of catalyst and achieving a productivity of 1.135 kg per litre of reactor volume per hour. 6-Undecanone and other long-chain ketones accessible this way can be hydrogenated to industrially meaningful alkanes, or converted into valuable fatty acids via a hydrogenation/elimination/isomerizing hydrocarboxylation sequence.

3.
ChemSusChem ; : e202300871, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38546156

RESUMO

Atomically dispersed catalysts have gained considerable attention due to their unique properties and high efficiency in various catalytic reactions. Herein, a series of Co/N-doped carbon (N-C) catalysts was prepared using a metal-lignin coordination strategy and employed in formic acid dehydrogenation (FAD) and hydrodeoxygenation (HDO) of vanillin. The atomically dispersed Co/N-C catalysts showed outstanding activity, acid resistance, and long-term stability in FAD. The improved activity and stability may be attributed to the high dispersion of Co species, increased surface area, and strong Co-N interactions. XPS and XAS characterization revealed the formation of Co-N3 centers, which are assumed to be the active sites. In addition, DFT calculations demonstrated that the adsorption of formic acid on single-atom Co was stronger than that on Co13 clusters, which may explain the high catalytic activity. The Co/N-C catalyst also showed promising performance in the transfer HDO of vanillin with formic acid, without any external additional molecular H2.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA