Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
PLoS Genet ; 15(12): e1008508, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31815936

RESUMO

Zinc is essential for cellular functions as it is a catalytic and structural component of many proteins. In contrast, cadmium is not required in biological systems and is toxic. Zinc and cadmium levels are closely monitored and regulated as their excess causes cell stress. To maintain homeostasis, organisms induce metal detoxification gene programs through stress responsive transcriptional regulatory complexes. In Caenorhabditis elegans, the MDT-15 subunit of the evolutionarily conserved Mediator transcriptional coregulator is required to induce genes upon exposure to excess zinc and cadmium. However, the regulatory partners of MDT-15 in this response, its role in cellular and physiological stress adaptation, and the putative role for mammalian MED15 in the metal stress responses remain unknown. Here, we show that MDT-15 interacts physically and functionally with the Nuclear Hormone Receptor HIZR-1 to promote molecular, cellular, and organismal adaptation to cadmium and excess zinc. Using gain- and loss-of-function mutants and qRT-PCR and reporter analysis, we find that mdt-15 and hizr-1 cooperate to induce zinc and cadmium responsive genes. Moreover, the two proteins interact physically in yeast-two-hybrid assays and this interaction is enhanced by the addition of zinc or cadmium, the former a known ligand of HIZR-1. Functionally, mdt-15 and hizr-1 mutants show defective storage of excess zinc in the gut and are hypersensitive to zinc-induced reductions in egg-laying. Furthermore, mdt-15 but not hizr-1 mutants are hypersensitive to cadmium-induced reductions in egg-laying, suggesting potential divergence of regulatory pathways. Lastly, mammalian MDT-15 orthologs bind genomic regulatory regions of metallothionein and zinc transporter genes in a cadmium and zinc-stimulated fashion, and human MED15 is required to induce a metallothionein gene in lung adenocarcinoma cells exposed to cadmium. Collectively, our data show that mdt-15 and hizr-1 cooperate to regulate cadmium detoxification and zinc storage and that this mechanism is at least partially conserved in mammals.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/genética , Fator 4 Nuclear de Hepatócito/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Fatores de Transcrição/metabolismo , Zinco/toxicidade , Animais , Caenorhabditis elegans/efeitos dos fármacos , Proteínas de Caenorhabditis elegans/genética , Proteínas de Transporte/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Fator 4 Nuclear de Hepatócito/genética , Humanos , Metalotioneína/genética , Mutação , Regiões Promotoras Genéticas , Receptores Citoplasmáticos e Nucleares/genética , Estresse Fisiológico , Fatores de Transcrição/genética , Técnicas do Sistema de Duplo-Híbrido
2.
J Allergy Clin Immunol ; 139(3): 950-963.e9, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27567326

RESUMO

BACKGROUND: Pentraxin 3 (PTX3) is a multifunctional molecule that plays a nonredundant role at the crossroads between pathogen clearance, innate immune system, matrix deposition, female fertility, and vascular biology. It is produced at sites of infection and inflammation by both structural and inflammatory cells. However, its role in allergen-induced inflammation remains to be tested. OBJECTIVE: We sought to determine the effect of Ptx3 deletion on ovalbumin (OVA)-induced allergic inflammation in a murine model of asthma. METHODS: Bronchoalveolar lavage fluid was collected from patients with severe asthma and healthy subjects, and the level of PTX3 was determined by using ELISA. Ptx3+/+ and Ptx3-/- mice were sensitized and challenged with OVA and bronchoalveolar lavage fluid, and the lungs were collected for assessing inflammation. Lung tissue inflammation and mucus production were assessed by means of flow cytometry and hematoxylin and eosin and periodic acid-Schiff staining, respectively. flexiVent was used to determine airway resistance to methacholine in these mice. RESULTS: Here we report that mice with severe asthma and OVA-sensitized/challenged mice had increased PTX3 levels in the lungs compared with healthy control mice. Mice lacking PTX3 have exaggerated neutrophilic/eosinophilic lung inflammation, mucus production, and airway hyperresponsiveness in an experimental model of OVA-induced asthma. Furthermore, OVA-exposed lung Ptx3-/- CD4 T cells exhibit an increased production of IL-17A, an effect that is accompanied by an increased signal transducer and activator of transcription 3 phosphorylation, reduced IL-2 production, and enhanced activation and survival. Also, we observed an increase in numbers of IL-6- and IL-23-producing dendritic cells in OVA-exposed Ptx3-/- mice compared with those in wild-type control mice. CONCLUSION: Altogether, PTX3 deficiency results in augmented airway hyperresponsiveness, mucus production, and IL-17A-dominant pulmonary inflammation, suggesting a regulatory role of PTX3 in the development of allergic inflammation.


Assuntos
Asma/imunologia , Proteína C-Reativa/imunologia , Linfócitos T CD4-Positivos/imunologia , Componente Amiloide P Sérico/imunologia , Adulto , Idoso , Alérgenos , Animais , Asma/metabolismo , Asma/fisiopatologia , Líquido da Lavagem Broncoalveolar , Proteína C-Reativa/genética , Citocinas/imunologia , Feminino , Humanos , Masculino , Camundongos Transgênicos , Pessoa de Meia-Idade , Muco/metabolismo , Ovalbumina , Componente Amiloide P Sérico/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA