Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(28): e2116675119, 2022 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-35867753

RESUMO

Collagen is the most abundant component of mammalian extracellular matrices. As such, the development of materials that mimic the biological and mechanical properties of collagenous tissues is an enduring goal of the biomaterials community. Despite the development of molded and 3D printed collagen hydrogel platforms, their use as biomaterials and tissue engineering scaffolds is hindered by either low stiffness and toughness or processing complexity. Here, we demonstrate the development of stiff and tough biohybrid composites by combining collagen with a zwitterionic hydrogel through simple mixing. This combination led to the self-assembly of a nanostructured fibrillar network of collagen that was ionically linked to the surrounding zwitterionic hydrogel matrix, leading to a composite microstructure reminiscent of soft biological tissues. The addition of 5-15 mg mL-1 collagen and the formation of nanostructured fibrils increased the elastic modulus of the composite system by 40% compared to the base zwitterionic matrix. Most notably, the addition of collagen increased the fracture energy nearly 11-fold ([Formula: see text] 180 J m-2) and clearly delayed crack initiation and propagation. These composites exhibit elastic modulus ([Formula: see text] 0.180 MJ) and toughness ([Formula: see text]0.617 MJ m-3) approaching that of biological tissues such as articular cartilage. Maintenance of the fibrillar structure of collagen also greatly enhanced cytocompatibility, improving cell adhesion more than 100-fold with >90% cell viability.


Assuntos
Materiais Biocompatíveis , Colágeno , Hidrogéis , Engenharia Tecidual , Animais , Materiais Biocompatíveis/síntese química , Materiais Biocompatíveis/química , Colágeno/química , Hidrogéis/química , Alicerces Teciduais/química
2.
Nano Lett ; 18(9): 5418-5425, 2018 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-30103605

RESUMO

Nanoindentation experiments on disordered nanoparticle packings performed both in an atomic force microscope and in situ in a transmission electron microscope are used to investigate the mechanics of plastic deformation. Under an applied load, these highly porous films exhibit load drops, the magnitudes of which are consistent with an exponential population distribution. These load drops are attributed to local rearrangements of a small number of particles, which bear similarities to shear transformation zones and to the T1 process, both of which have been previously predicted for disordered packings. An increase in the relative humidity results in an increase in the number of observed load drops, indicating that the strength of the particle interactions has a significant effect on the modes of plastic deformation. These results suggest how disordered nanoparticle packings may be expected to behave in devices operating under varying environments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA