Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(29): e2218860120, 2023 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-37450494

RESUMO

Urbanization is predicted to be a key driver of disease emergence through human exposure to novel, animal-borne pathogens. However, while we suspect that urban landscapes are primed to expose people to novel animal-borne diseases, evidence for the mechanisms by which this occurs is lacking. To address this, we studied how bacterial genes are shared between wild animals, livestock, and humans (n = 1,428) across Nairobi, Kenya-one of the world's most rapidly developing cities. Applying a multilayer network framework, we show that low biodiversity (of both natural habitat and vertebrate wildlife communities), coupled with livestock management practices and more densely populated urban environments, promotes sharing of Escherichia coli-borne bacterial mobile genetic elements between animals and humans. These results provide empirical support for hypotheses linking resource provision, the biological simplification of urban landscapes, and human and livestock demography to urban dynamics of cross-species pathogen transmission at a landscape scale. Urban areas where high densities of people and livestock live in close association with synanthropes (species such as rodents that are more competent reservoirs for zoonotic pathogens) should be prioritized for disease surveillance and control.


Assuntos
Doenças dos Animais , Animais Selvagens , Animais , Humanos , Quênia/epidemiologia , Animais Selvagens/microbiologia , Ecossistema , Biodiversidade , Cidades , Urbanização , Gado/microbiologia
2.
BMC Med ; 20(1): 471, 2022 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-36482440

RESUMO

BACKGROUND: Livestock systems have been proposed as a reservoir for antimicrobial-resistant (AMR) bacteria and AMR genetic determinants that may infect or colonise humans, yet quantitative evidence regarding their epidemiological role remains lacking. Here, we used a combination of genomics, epidemiology and ecology to investigate patterns of AMR gene carriage in Escherichia coli, regarded as a sentinel organism. METHODS: We conducted a structured epidemiological survey of 99 households across Nairobi, Kenya, and whole genome sequenced E. coli isolates from 311 human, 606 livestock and 399 wildlife faecal samples. We used statistical models to investigate the prevalence of AMR carriage and characterise AMR gene diversity and structure of AMR genes in different host populations across the city. We also investigated household-level risk factors for the exchange of AMR genes between sympatric humans and livestock. RESULTS: We detected 56 unique acquired genes along with 13 point mutations present in variable proportions in human and animal isolates, known to confer resistance to nine antibiotic classes. We find that AMR gene community composition is not associated with host species, but AMR genes were frequently co-located, potentially enabling the acquisition and dispersal of multi-drug resistance in a single step. We find that whilst keeping livestock had no influence on human AMR gene carriage, the potential for AMR transmission across human-livestock interfaces is greatest when manure is poorly disposed of and in larger households. CONCLUSIONS: Findings of widespread carriage of AMR bacteria in human and animal populations, including in long-distance wildlife species, in community settings highlight the value of evidence-based surveillance to address antimicrobial resistance on a global scale. Our genomic analysis provided an in-depth understanding of AMR determinants at the interfaces of One Health sectors that will inform AMR prevention and control.


Assuntos
Gado , Saúde Única , Humanos , Animais , Escherichia coli/genética , Antibacterianos/farmacologia , Quênia/epidemiologia , Farmacorresistência Bacteriana/genética
3.
Prev Vet Med ; 230: 106263, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38964210

RESUMO

Reducing the inappropriate use of antibiotics in food animals is a global priority to address antimicrobial resistance (AMR). We investigated practices and factors associated with antibiotic use in small-scale commercial broiler farms in Lilongwe district, Malawi. We used structured questionnaires to collect data on recent antibiotic use practices among 128 broiler farmers, who kept between 50 and 1 000 birds, from December 2022 to March 2023. Logistic regression analysis was used to identify risk factors associated with antibiotic use. Over half (53.1 %, n=68) of the farms reported using antibiotics at least once in the previous production cycle. Overall, 11 different types of antibiotics were used either for treatment and/or preventive purposes, with oxytetracycline (88.2 %), erythromycin (29.4 %), and enrofloxacin (26.5 %) reported as the frequently used. One-third of all antibiotic formulations contained multiple active antibiotic ingredients, with 12 % containing four antibiotics. Covariates associated with an increased likelihood of antibiotic use include disease incidence (OR=13.8, 95 % CI 5.27-42.50, p<0.001) and entry of wild birds into poultry houses (OR=3.56, 95 % CI =1.44-9.61, p=0.008). Our study highlights inappropriate usage of antibiotics, largely associated with reduced biosecurity and disease incidence. These findings underscore the need to strengthen veterinary services, reinforce regulations on antibiotic access and use, and farmer education programs promoting proper husbandry, biosecurity, and responsible antibiotic use.

4.
Front Vet Sci ; 11: 1304318, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38645649

RESUMO

Introduction: To effectively regulate and reduce antibiotic use, in the livestock sector, a thorough understanding of the flow of veterinary antibiotics will help to identify key nodes in the chain for targeted interventions. The aim of this study was to understand the flow of antibiotics from import to end-user, and identify relevant governance mechanisms. Methods: A mixed methods approach was used to collect data in three Kenyan counties (Nairobi, Kiambu, and Kajiado). Focus group discussions (n = 23), individual interviews (n = 148), and key informant interviews (n = 10) were conducted. Results: The key actors identified include primary wholesalers, secondary wholesalers, retailers, animal health service providers (AHSPs), and farmers. Kenya imports 100% of its veterinary antibiotics: primary wholesalers legally import antibiotics as finished pharmaceutical products (90%) or active pharmaceutical ingredients (10%) after approval by the Veterinary Medicines Directorate. Secondary wholesalers play a major role in the distribution of antibiotics (60% of antibiotics) from importers to farmers, AHSPs, and retailers. Some of the illegal sources of antibiotics include unlicenced/unauthorized middlemen and online platforms that sell directly to retailers, AHSPs, and farmers. Discussion: Despite the presence of various laws and regulations governing the antibiotic value chain, implementation has been a challenge due to financial and human resource constraints. This contributes to over-the-counter sale of antibiotics without prescription, unlicensed businesses selling antibiotics, illegal importation, and presence of poor-quality drugs. There is a need to review the applicability of existing policies and address policy gaps (e.g., product containing antibiotic combinations, and use of human critically important antibiotics) to ensure the prudent sale and use of antibiotics, pharmacovigilance, antimicrobial use surveillance, and developing a business model that aligns with antibiotic stewardship. Additional interventions include awareness raising and capacity building of the different stakeholders along the antibiotic distribution chain to reduce antibiotic mis- and overuse.

5.
PLOS Glob Public Health ; 4(4): e0003046, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38662675

RESUMO

The COVID-19 pandemic has significantly impacted healthcare systems, including antibiotic use practices. We present data on patterns of antibiotic dispensing and use in community and hospital settings respectively in Nairobi, Kenya during the pandemic. We conducted interviews with 243 pharmacies in Nairobi using a standardised questionnaire from November to December 2021. The data collected included demographic characteristics, antibiotic customers, types of antibiotics sold, and antibiotic prescribing practices. Additionally, we retrospectively reviewed health records for 992 and 738 patients admitted in COVID-19 and general wards at two large inpatient hospitals between April 2020 and May 2021, and January 2019 to October 2021, respectively. Demographic, utilisation of laboratory services, treatment, clinical, and outcome data were collected using a modified Global WHO Point Prevalence Surveys (Global-PPS) tool. Almost all pharmacies (91.4%) served customers suspected of having COVID-19 with a mean weekly number of 15.6 customers. All pharmacies dispensed antibiotics, mainly azithromycin and beta lactams to suspected COVID-19 infected customers. 83.4% of hospitalised COVID-19 patients received at least one antibiotic at some point during their hospitalisation, which was significantly higher than the 53.8% in general ward patients (p<0.001). Similarly, the average number of antibiotics administered to COVID-19 patients was higher than that of patients in the general ward (1.74 vs 0.9). Azithromycin and ceftriaxone were the most commonly used antibiotics in COVID-19 patients compared to ceftriaxone and metronidazole in the general wards. Only 2% of antibiotic prescriptions for COVID-19 patients were supported by microbiological investigations, which was consistent with the proportion of 6.8% among the general ward population. Antibiotics were commonly prescribed to customers and patients suspected of having COVID-19 either in community pharmacies or in hospital, without a prescription or laboratory diagnosis. These findings emphasize the crucial role of antibiotic stewardship, particularly in community pharmacies, in the context of COVID-19.

6.
One Health ; 17: 100646, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38024269

RESUMO

Understanding antibiotic use in livestock systems is key in combating antimicrobial resistance (AMR) and developing effective interventions. Using a standardised questionnaire, we investigated the patterns and drivers of antibiotic use in 165 cattle farms across the three major cattle production systems in Kenya: intensive, extensive, and semi-intensive systems across in three counties: Machakos, Makueni and Narok in Kenya. We used a causal diagram to inform regression models to explore the drivers of antibiotic use in the study farms. Antibiotic use was reported in 92.7% of farms, primarily for prophylactic purposes. Oxytetracycline, penicillin, and streptomycin were the most used antibiotics to treat and control the most reported diseases including mastitis, diarrhoea and East Coast fever (ECF). Regression analysis indicated a positive association between the frequency of antibiotic use at the farm level and both disease incidence and herd size. Conversely, farms that provided cattle with appropriate housing were less likely to use antibiotics, and there was no difference in antibiotic use between those who consulted with veterinarians or sourced antibiotics directly from animal health providers. Our study highlights the complexities around understanding the interplay between practices and drivers of antibiotic use. It also underscores the necessity to enhance education regarding the appropriate usage of antibiotics among cattle farmers, encourage the adoption of proper herd management practices which may reduce disease burden, and reinforce veterinary services and supportive legislation to promote the prudent use of antimicrobials.

7.
Sci Rep ; 13(1): 23101, 2023 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-38155204

RESUMO

Understanding antibiotic use in dairy systems is critical to guide antimicrobial stewardship programs. We investigated antibiotic use practices in small-holder dairy farms, antibiotic quality, and antimicrobial resistance (AMR) awareness among veterinary drug retailers in a mixed farming community in the central Kenyan highlands. Data were collected from 248 dairy farms and 72 veterinary drug stores between February 2020 and October 2021. A scale was developed to measure knowledge about AMR and antibiotic use using item response theory, and regression models were used to evaluate factors associated with antibiotic use and AMR knowledge. The active pharmaceutical ingredient (API) content of 27 antibiotic samples was determined using high-performance liquid chromatography (HPLC). The presence and levels of 11 antibiotic residues in 108 milk samples collected from the study farms were also investigated using liquid chromatography tandem mass spectrometry (LC-MS/MS). Almost all farms (98.8%, n = 244) reported using antibiotics at least once in the last year, mostly for therapeutic reasons (35.5%). The most used antibiotics were tetracycline (30.6%), penicillin (16.7%), and sulfonamide (9.4%), either individually or in combination, and predominantly in the injectable form. Larger farm size (OR = 1.02, p < 0.001) and history of vaccination use (OR = 1.17, p < 0.001) were significantly associated with a higher frequency of antibiotic use. Drug retailers who advised on animal treatments had a significantly higher mean knowledge scores than those who only sold drugs. We found that 44.4% (12/27) of the tested antibiotics did not meet the United States Pharmacopeial test specifications (percentage of label claim). We detected nine antibiotics in milk, including oxytetracycline, sulfamethoxazole, and trimethoprim. However, only three samples exceeded the maximum residue limits set by the Codex Alimentarius Commission. Our findings indicate that antibiotics of poor quality are accessible and used in small-holder dairy systems, which can be found in milk. These results will aid future investigations on how to promote sustainable antibiotic use practices in dairy systems.


Assuntos
Antibacterianos , Drogas Veterinárias , Animais , Humanos , Antibacterianos/uso terapêutico , Antibacterianos/análise , Quênia , Fazendeiros , Cromatografia Líquida , Drogas Veterinárias/uso terapêutico , Indústria de Laticínios/métodos , Espectrometria de Massas em Tandem , Fazendas
8.
PLOS Glob Public Health ; 3(11): e0002594, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37992040

RESUMO

Escherichia coli commonly inhabits the gut of humans and animals as part of their microbiota. Though mostly innocuous, some strains have virulence markers that make them pathogenic. This paper presents results of a cross-sectional epidemiological study examining prevalence of diarrheagenic E. coli (DEC) pathotypes in stool samples of asymptomatic healthy children (n = 540) in Dagoretti South subcounty, Nairobi, Kenya. E. coli was cultured and pathotyped using PCR to target specific virulence markers associated with Shiga-toxin, enteropathogenic, enterotoxigenic, enteroaggregative, entero-invasive and diffusely adherent E. coli. Overall prevalence of DEC pathotypes was 20.9% (113/540) with enteropathogenic E. coli being the most prevalent (34.1%), followed by enteroaggregative E. coli (23.5%) and Shiga-toxin producing E. coli (22.0%) among positive samples. We found evidence of co-infection with multiple pathotypes in 15% of the positive samples. Our models indicated that at the household level, carriage of DEC pathotypes in children was associated with age group [12-18 months] (OR 1.78; 95%CI 1.03-3.07; p = 0.04), eating matoke (mashed bananas) (OR 2.32; 95%CI 1.44-3.73; p = 0.001) and pulses/legumes (OR 1.74; 95%CI 1.01-2.99; p = 0.046) while livestock ownership or contact showed no significant association with DEC carriage (p>0.05). Our findings revealed significant prevalence of pathogenic DEC circulating among presumptive healthy children in the community. Since there has been no previous evidence of an association between any food type and DEC carriage, unhygienic handling, and preparation of matoke and pulses/legumes could be the reason for significant association with DEC carriage. Children 12-18 months old are more prone to DEC infections due to exploration and hand-to-mouth behavior. A detailed understanding is required on what proportion of positive cases developed severe symptomatology as well as fatal outcomes. The co-infection of pathotypes in the rapidly urbanizing environment needs to be investigated for hybrid or hetero-pathotype circulation that have been implicated in previous infection outbreaks.

9.
Lancet Microbe ; 4(12): e1056-e1062, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37977165

RESUMO

The intersection of human, animal, and ecosystem health at One Health interfaces is recognised as being of key importance in the evolution and spread of antimicrobial resistance (AMR) and represents an important, and yet rarely realised opportunity to undertake vital AMR surveillance. A working group of international experts in pathogen genomics, AMR, and One Health convened to take part in a workshop series and online consultation focused on the opportunities and challenges facing genomic AMR surveillance in a range of settings. Here we outline the working group's discussion of the potential utility, advantages of, and barriers to, the implementation of genomic AMR surveillance at One Health interfaces and propose a series of recommendations for addressing these challenges. Embedding AMR surveillance at One Health interfaces will require the development of clear beneficial use cases, especially in low-income and middle-income countries. Evidence of directionality, risks to human and animal health, and potential trade implications were also identified by the working group as key issues. Addressing these challenges will be vital to enable genomic surveillance technology to reach its full potential for assessing the risk of transmission of AMR between the environment, animals, and humans at One Health interfaces.


Assuntos
Antibacterianos , Saúde Única , Animais , Humanos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Farmacorresistência Bacteriana/genética , Ecossistema , Genômica
10.
Lancet Microbe ; 4(12): e1035-e1039, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37977164

RESUMO

Nearly a century after the beginning of the antibiotic era, which has been associated with unparalleled improvements in human health and reductions in mortality associated with infection, the dwindling pipeline for new antibiotic classes coupled with the inevitable spread of antimicrobial resistance (AMR) poses a major global challenge. Historically, surveillance of bacteria with AMR typically relied on phenotypic analysis of isolates taken from infected individuals, which provides only a low-resolution view of the epidemiology behind an individual infection or wider outbreak. Recent years have seen increasing adoption of powerful new genomic technologies with the potential to revolutionise AMR surveillance by providing a high-resolution picture of the AMR profile of the bacteria causing infections and providing real-time actionable information for treating and preventing infection. However, many barriers remain to be overcome before genomic technologies can be adopted as a standard part of routine AMR surveillance around the world. Accordingly, the Surveillance and Epidemiology of Drug-resistant Infections Consortium convened an expert working group to assess the benefits and challenges of using genomics for AMR surveillance. In this Series, we detail these discussions and provide recommendations from the working group that can help to realise the massive potential benefits for genomics in surveillance of AMR.


Assuntos
Anti-Infecciosos , Infecções Bacterianas , Humanos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Farmacorresistência Bacteriana/genética , Infecções Bacterianas/tratamento farmacológico , Genômica
11.
Lancet Glob Health ; 10(4): e579-e584, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35303467

RESUMO

The COVID-19 pandemic has underscored the need to strengthen national surveillance systems to protect a globally connected world. In low-income and middle-income countries, zoonotic disease surveillance has advanced considerably in the past two decades. However, surveillance efforts often prioritise urban and adjacent rural communities. Communities in remote rural areas have had far less support despite having routine exposure to zoonotic diseases due to frequent contact with domestic and wild animals, and restricted access to health care. Limited disease surveillance in remote rural areas is a crucial gap in global health security. Although this point has been made in the past, practical solutions on how to implement surveillance efficiently in these resource-limited and logistically challenging settings have yet to be discussed. We highlight why investing in disease surveillance in remote rural areas of low-income and middle-income countries will benefit the global community and review current approaches. Using semi-arid regions in Kenya as a case study, we provide a practical approach by which surveillance in remote rural areas can be strengthened and integrated into existing systems. This Viewpoint represents a transition from simply highlighting the need for a more holistic approach to disease surveillance to a solid plan for how this outcome might be achieved.


Assuntos
COVID-19 , Saúde Global , Países em Desenvolvimento , Humanos , Pandemias , Pobreza
12.
Nat Microbiol ; 7(4): 581-589, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35288654

RESUMO

Quantitative evidence for the risk of zoonoses and the spread of antimicrobial resistance remains lacking. Here, as part of the UrbanZoo project, we sampled Escherichia coli from humans, livestock and peri-domestic wildlife in 99 households across Nairobi, Kenya, to investigate its distribution among host species in this rapidly developing urban landscape. We performed whole-genome sequencing of 1,338 E. coli isolates and found that the diversity and sharing patterns of E. coli were heavily structured by household and strongly shaped by host type. We also found evidence for inter-household and inter-host sharing and, importantly, between humans and animals, although this occurs much less frequently. Resistome similarity was differently distributed across host and household, consistent with being driven by shared exposure to antimicrobials. Our results indicate that a large, epidemiologically structured sampling framework combined with WGS is needed to uncover strain-sharing events among different host populations in complex environments and the major contributing pathways that could ultimately drive the emergence of zoonoses and the spread of antimicrobial resistance.


Assuntos
Infecções por Escherichia coli , Escherichia coli , Animais , Escherichia coli/genética , Infecções por Escherichia coli/epidemiologia , Infecções por Escherichia coli/veterinária , Quênia/epidemiologia , Gado , Metagenômica
13.
Front Vet Sci ; 8: 581376, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33644142

RESUMO

The Nairobi pork food system is a growing livestock sub-sector which serves as a source of food and livelihood to its inhabitants. The study aimed to map Nairobi's pork value chains, assess their governance, operational challenges and their impacts on food safety risks and management practices. Qualitative data were collected in seven focus group discussions and 10 key informants' interviews on animal movements and product flows, stakeholders' interactions, perceptions on system governance and challenges, and on their potential impact on food safety management. Quantitative data were obtained to show the importance of flows, business operations and market share. Thematic analysis was conducted to identify themes that provide understanding on the governance, challenges and food safety practices in each profile. The predominant chains identified were [1] The "large integrated company" profile which accounted for 83.6% of pork marketed through abattoirs, and was based on a well-structured supply system, with owned farms (representing 50% of their supply), contract farms and semi-contract farms and [2] Local independent abattoirs, accounting for 16.4%, are privately owned small-scale production, supplied mainly (70%) by small farmers from the immediate neighboring areas. The main challenges associated with governance themes included; (i) Inadequate/lack of enforcement of existing regulation (ii) Negative effect of devolution system of governance (iii) Pig traders' dominance (iii) Lack of association at all system nodes, and (iv) Male dominance across the pig system. The main challenges reported included; (i) Lack of capital to upscale (ii) Poor infrastructure (iii) Pig shortage (iv) Excessive regulation (v) Lack of training (vi) Diseases (v) Lack of knowledge (vi) Unfair competition. Food safety themes were associated with (i) Inadequate slaughter facilities forcing traders/farmers to undertake home slaughter (ii) Lack of knowledge on disease management (iii) Lack of training on hygienic practices in the slaughterhouse and (iv) Lack/insufficient capital to purchase equipment's to ensure proper hygiene e.g., boilers. The study provides insights into the structure of the pork system supplying Nairobi, the governance issues important to the stakeholders, challenges and food safety issues. The framework obtained can be used by policy makers and researchers to investigate and develop pork industry and for food safety and disease control programmes.

14.
Clin Microbiol Infect ; 26(12): 1612-1616, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32979568

RESUMO

BACKGROUND: Livestock have been implicated as a reservoir for antimicrobial resistance (AMR) that can spread to humans. Close proximity and ecological interfaces involving livestock have been posited as risk factors for the transmission of AMR. In spite of this, there are sparse data and limited agreement on the transmission dynamics that occur. OBJECTIVES: To identify how genome sequencing approaches can be used to quantify the dynamics of AMR transmission at the human-livestock interface, and where current knowledge can be improved to better understand the impact of transmission on the spread of AMR. SOURCES: Key articles investigating various aspects of AMR transmission at the human-livestock interface are discussed, with a focus on Escherichia coli. CONTENT: We recapitulate the current understanding of the transmission of AMR between humans and livestock based on current genomic and epidemiological approaches. We discuss how the use of well-designed, high-resolution genome sequencing studies can improve our understanding of the human-livestock interface. IMPLICATIONS: A better understanding of the human-livestock interface will aid in the development of evidence-based and effective One Health interventions that can ultimately reduce the burden of AMR in humans.


Assuntos
Antibacterianos/farmacologia , Zoonoses Bacterianas , Farmacorresistência Bacteriana , Genômica , Gado/microbiologia , Animais , Zoonoses Bacterianas/genética , Zoonoses Bacterianas/microbiologia , Farmacorresistência Bacteriana/efeitos dos fármacos , Farmacorresistência Bacteriana/genética , Escherichia coli/efeitos dos fármacos , Escherichia coli/patogenicidade , Infecções por Escherichia coli/genética , Infecções por Escherichia coli/microbiologia , Transferência Genética Horizontal/genética , Genoma Bacteriano/genética , Humanos , Plasmídeos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA