Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 153
Filtrar
1.
Chemistry ; 30(15): e202303373, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38032346

RESUMO

A widely utilised class of ligands in synthesis and catalysis, ß-diketiminate (BDI) or NacNac compounds were initially considered innocent in the sense that they remained intact in all their applications. That changed when the γ-C-H unit of their NCCCN backbone was found to engage in reactions with electrophiles. Here, we show that this special reactivity can be used advantageously to prepare tripodal modifications of the common NacNac ligand derived from 2,6-diisopropylphenyl-ß-methyldiketimine [NacNacH (Me, Dipp)]. Lithiation to give NacNacLi, followed by reactions with isocyanates, isothiocyanates and a carbodiimide, have afforded a series of tripodal NacNac variants having N,N,N,O; N,N,N,S; or N,N,N,N potential dentation sites, many of which have been crystallographically characterised. Distinct ligating modes of these new ligands have been elucidated through the crystal structures of their lithiated derivatives.

2.
Chemistry ; 29(56): e202301849, 2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37429823

RESUMO

Three distinct routes are reported to the soluble, dihydridoaluminate compounds, AM[Al(NONDipp )(H)2 ] (AM=Li, Na, K, Rb, Cs; [NONDipp ]2- =[O(SiMe2 NDipp)2 ]2- ; Dipp=2,6-iPr2 C6 H3 ) starting from the alkali metal aluminyls, AM[Al(NONDipp )]. Direct H2 hydrogenation of the heavier analogues (AM=Rb, Cs) produced the first examples of structurally characterized rubidium and caesium dihydridoaluminates, although harsh conditions were required for complete conversion. Using 1,4-cyclohexadiene (1,4-CHD) as an alternative hydrogen source in transfer hydrogenation reactions provided a lower energy pathway to the full series of products for AM=Li-Cs. A further moderation in conditions was noted for the thermal decomposition of the (silyl)(hydrido)aluminates, AM[Al(NONDipp )(H)(SiH2 Ph)]. Probing the reaction of Cs[Al(NONDipp )] with 1,4-CHD provided access to a novel inverse sandwich complex, [{Cs(Et2 O)}2 {Al(NONDipp )(H)}2 (C6 H6 )], containing the 1,4-dialuminated [C6 H6 ]2- dianion and representing the first time that an intermediate in the commonly utilized oxidation process of 1,4-CHD to benzene has been trapped. The synthetic utility of the newly installed Al-H bonds has been demonstrated by their ability to reduce CO2 under mild conditions to form the bis-formate AM[Al(NONDipp )(O2 CH)2 ] compounds, which exhibit a diverse series of eyecatching bimetallacyclic structures.

3.
Angew Chem Int Ed Engl ; 62(27): e202304966, 2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37132607

RESUMO

Catalytic reduction of a representative set of imines, both aldimines and ketimines, to amines has been studied using transfer hydrogenation from 1,4-dicyclohexadiene. Unusually, this has been achieved using s-block pre-catalysts, namely 1-metallo-2-tert-butyl-1,2-dihydropyridines, 2-tBuC5 H5 NM, M(tBuDHP), where M=Li-Cs. Reactions have been monitored in C6 D6 and tetrahydrofuran-d8 (THF-d8 ). A definite trend is observed in catalyst efficiency with the heavier alkali metal tBuDHPs outperforming the lighter congeners. In general, Cs(tBuDHP) is the optimal pre-catalyst with, in the best cases, reactions producing quantitative yields of amines in minutes at room temperature using 5 mol % catalyst. Supporting the experimental study, Density Functional Theory (DFT) calculations have also been carried out which reveal that Cs has a pathway with a significantly lower rate determining step than the Li congener. In the postulated initiation pathways DHP can act as either a base or as a surrogate hydride.

4.
Chemistry ; 28(55): e202201716, 2022 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-35775467

RESUMO

Rare examples of heavier alkali metal manganates [{(AM)Mn(CH2 SiMe3 )(N'Ar )2 }∞ ] (AM=K, Rb, or Cs) [N'Ar =N(SiMe3 )(Dipp), where Dipp=2,6-iPr2 -C6 H3 ] have been synthesised with the Rb and Cs examples crystallographically characterised. These heaviest manganates crystallise as polymeric zig-zag chains propagated by AM⋅⋅⋅π-arene interactions. Key to their preparation is to avoid Lewis base donor solvents. In contrast, using multidentate nitrogen donors encourages ligand scrambling leading to redistribution of these bimetallic manganate compounds into their corresponding homometallic species as witnessed for the complete Li - Cs series. Adding to the few known crystallographically characterised unsolvated and solvated rubidium and caesium s-block metal amides, six new derivatives ([{AM(N'Ar )}∞ ], [{AM(N'Ar )⋅TMEDA}∞ ], and [{AM(N'Ar )⋅PMDETA}∞ ] where AM=Rb or Cs) have been structurally authenticated. Utilising monodentate diethyl ether as a donor, it was also possible to isolate and crystallographically characterise sodium manganate [(Et2 O)2 Na(n Bu)Mn[(N'Ar )2 ], a monomeric, dinuclear structure prevented from aggregating by two blocking ether ligands bound to sodium.

5.
Chemistry ; 28(55): e202201085, 2022 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-35811447

RESUMO

A series of group 1 hydrocarbon-soluble donor free aluminates [AM(t BuDHP)(TMP)Al(i Bu)2 ] (AM=Li, Na, K, Rb) have been synthesised by combining an alkali metal dihydropyridyl unit [(2-t BuC5 H5 N)AM)] containing a surrogate hydride (sp3 C-H) with [(i Bu)2 Al(TMP)]. These aluminates have been characterised by X-ray crystallography and NMR spectroscopy. While the lithium aluminate forms a monomer, the heavier alkali metal aluminates exist as polymeric chains propagated by non-covalent interactions between the alkali metal cations and the alkyldihydropyridyl units. Solvates [(THF)Li(t BuDHP)(TMP)Al(i Bu)2 ] and [(TMEDA)Na(t BuDHP)(TMP)Al(i Bu)2 ] have also been crystallographically characterised. Theoretical calculations show how the dispersion forces tend to increase on moving from Li to Rb, as opposed to the electrostatic forces of stabilization, which are orders of magnitude more significant. Having unique structural features, these bimetallic compounds can be considered as starting points for exploring unique reactivity trends as alkali-metal-aluminium hydride surrog[ATES].

6.
Chemistry ; 28(18): e202104260, 2022 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-35170823

RESUMO

Arylmethyl anions allow alkali-metals to bind in a σ-fashion to the lateral carbanionic centre or a π-fashion to the aryl ring or in between these extremities, with the trend towards π bonding increasing on descending group 1. Here we review known alkali metal structures of diphenylmethane, fluorene, 2-benzylpyridine and 4-benzylpyridine. Next, we synthesise Li, Na, K monomers of these diarylmethyls using polydentate donors PMDETA or Me6 TREN to remove competing oligomerizing interactions, studying the effect that two aromatic rings has on negative charge (de)localisation via NMR, X-ray crystallographic and DFT studies. Diphenylmethyl and fluorenyl anions maintain C(H)-M interactions regardless of alkali-metal, although the adjacent arene carbons engage in interactions with larger alkali-metals. Introducing a nitrogen atom into the ring (at the 2- or 4-position) encourages relocalisation of negative charge away from the deprotonated carbon and onto nitrogen. Phenyl(2-pyridyl)methyl moves from an enamide formation at one extremity (lithium) to an aza-allyl formation at the other extremity (potassium), while C- or N-coordination modes become energetically viable for Na and K phenyl(4-pyridyl)methyl complexes.


Assuntos
Metais Alcalinos , Álcalis , Ânions/química , Cátions/química , Metais Alcalinos/química , Modelos Moleculares
7.
Inorg Chem ; 61(49): 19838-19846, 2022 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-36503245

RESUMO

We report the oxidative addition of phenylsilane to the complete series of alkali metal (AM) aluminyls [AM{Al(NONDipp)}]2 (AM = Li, Na, K, Rb, and Cs). Crystalline products (1-AM) have been isolated as ether or THF adducts, [AM(L)n][Al(NONDipp)(H)(SiH2Ph)] (AM = Li, Na, K, Rb, L = Et2O, n = 1; AM = Cs, L = THF, n = 2). Further to this series, the novel rubidium rubidiate, [{Rb(THF)4}2(Rb{Al(NONDipp)(H)(SiH2Ph)}2)]+ [Rb{Al(NONDipp)(H)(SiH2Ph)}2]-, was isolated during an attempted recrystallization of Rb[Al(NONDipp)(H)(SiH2Ph)] from a hexane/THF mixture. Structural and spectroscopic characterizations of the series 1-AM confirm the presence of µ-hydrides that bridge the aluminum and alkali metals (AM), with multiple stabilizing AM···π(arene) interactions to either the Dipp- or Ph-substituents. These products form a complete series of soluble, alkali metal (hydrido) aluminates that present a platform for further reactivity studies.


Assuntos
Metais Alcalinos , Metais Alcalinos/química , Sódio/química , Lítio , Rubídio/química , Íons
8.
Inorg Chem ; 60(8): 6057-6064, 2021 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-33830739

RESUMO

Homoleptic LiNacNac forms simple donor-acceptor complexes with N,N'-dicyclohexylcarbodiimide (CyN═C═NCy), triphenylphosphine oxide (Ph3P═O), and benzophenone (Ph2CO). These crystallographically characterized compounds could be regarded as model intermediates en route to reducing the N═C, P═O, and C═O bonds of unsaturated substrates. Heteroleptic NacNacMg(TMP) intriguingly functions as a TMP nucleophile both with t-BuNCO and t-BuNCS, producing a urea or thiourea derivative respectively attached to Mg, though the NacNac ligand in the former reaction also engages noninnocently with a second t-BuNCO molecule via insertion at the reactive NacNac backbone γ-carbon site.

9.
Inorg Chem ; 60(5): 2872-2877, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33641334

RESUMO

High-resolution X-ray diffraction data of triisobutylaluminum were collected, and unexpected structural features were observed, hinting toward yet unnoticed polarization effects. To approach these, a multipole refinement using the Hansen and Coppens method, followed by a topological analysis using Bader's quantum theory of atoms in molecules, was employed. The electron localization function based on density functional theory calculations supported the experimental findings. Thereby, unobserved electron shifts within the isobutyl group become detectable. It is shown that the impact of this electron shift is dependent mainly on whether the iBu substituent of the homoleptic triisobutylaluminum dimer [AliBu3]2 (1) is connected by a directional (σ) or a multicenter (µ) bond to the metal. The effect found is assumed not only to be of paramount importance for organoaluminum compounds, widely used in synthesis and in the industrial value chain, but also to be present in organometallic chemistry in general.

10.
Chem Rev ; 119(14): 8332-8405, 2019 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-30888154

RESUMO

The development of synthetic chemistry since the early 1900s owes much to the service of organolithium reagents. Brilliant bases (e.g., deprotonating C-H bonds), nucleophiles (e.g., adding to unsaturated molecules), and transfer agents (e.g., delivering ligands to other metals), these versatile virtuosi and to a lesser extent the organic derivatives of the other common alkali metals sodium and potassium have proved indispensable in both academia and technology. Today these monometallic compounds are still utilized widely in synthetic campaigns, but in recent years they have been joined by an assortment of bimetallic formulations that also contain an alkali metal but in company with another metal. These bimetallic formulations often exhibit unique chemistry that can be interpreted in terms of synergistic effects, for which the alkali metal is essential, though it is often the second metal that performs the synthetic transformation. Here, this "alkali-metal-mediated" chemistry is surveyed focusing mainly on bimetallic formulations containing two alkali metals or an alkali metal paired with magnesium, calcium, zinc, aluminum, or gallium. In this International Year of the Periodic Table (IYPT), we ponder whether a Pairiodic Table of Element Pairs will emerge in the future.

11.
Angew Chem Int Ed Engl ; 60(17): 9247-9262, 2021 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-33017511

RESUMO

Organolithium compounds have been at the forefront of synthetic chemistry for over a century, as they mediate the synthesis of myriads of compounds that are utilised worldwide in academic and industrial settings. For that reason, lithium has always been the most important alkali metal in organometallic chemistry. Today, that importance is being seriously challenged by sodium and potassium, as the alkali-metal mediation of organic reactions in general has started branching off in several new directions. Recent examples covering main-group homogeneous catalysis, stoichiometric organic synthesis, low-valent main-group metal chemistry, polymerization, and green chemistry are showcased in this Review. Since alkali-metal compounds are often not the end products of these applications, their roles are rarely given top billing. Thus, this Review has been written to alert the community to this rising unifying phenomenon of "alkali-metal mediation".

12.
Angew Chem Int Ed Engl ; 60(1): 493-498, 2021 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-33006796

RESUMO

s-Block metal carbenoids are carbene synthons and applied in a myriad of organic transformations. They exhibit a strong structure-activity relationship, but this is only poorly understood due to the challenging high reactivity and sensitivity of these reagents. Here, we report on systematic VT and DOSY NMR studies, XRD analyses as well as DFT calculations on a sulfoximinoyl-substituted model system to explain the pronounced solvent dependency of the carbenoid stability. While the sodium and potassium chloride carbenoids showed high stabilities independent of the solvent, the lithium carbenoid was stable at room temperature in THF but decomposed at -10 °C in toluene. These divergent stabilities could be explained by the different structures formed in solution. In contrast to simple organolithium reagents, the monomeric THF-solvate was found to be more stable than the dimer in toluene, since the latter more readily forms direct Li/Cl interactions which facilitate decomposition via α-elimination.

13.
Angew Chem Int Ed Engl ; 60(1): 499-506, 2021 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-33080102

RESUMO

We present herein anionic borate-based bi-mesoionic carbene compounds of the 1,2,3-triazol-4-ylidene type that undergo C-N isomerization reactions. The isomerized compounds are excellent ligands for CoII  centers. Strong agostic interactions with the "C-H"-groups of the cyclohexyl substituents result in an unusual low-spin square planar CoII  complex, which is unreactive towards external substrates. Such agostic interactions are absent in the complex with phenyl substituents on the borate backbone. This complex displays a high-spin tetrahedral CoII  center, which is reactive towards external substrates including dioxygen. To the best of our knowledge, this is also the first investigation of agostic interactions through single-crystal EPR spectroscopy. We conclusively show here that the structure and properties of these CoII complexes can be strongly influenced through interactions in the secondary coordination sphere. Additionally, we unravel a unique ligand rearrangement for these classes of anionic mesoionic carbene-based ligands.

14.
Chemistry ; 25(64): 14728-14734, 2019 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-31574177

RESUMO

Though alkali metal NacNac (ß-diketiminate) complexes have been utilised in synthesis as NacNac-transfer agents, studies of them in their own right with small molecules are exceptionally rare. Here, the lithium compound of the common 2,6-diisopropylphenyl-ß-methyldiketiminate [NacNac(Dipp, Me)] ligand is investigated with carbon dioxide and isocyanates. In all four cases reaction occurs at the backbone γ-C atom of the NacNac ligand, which redistributes electronically into a diimine. Insertion of CO2 gives an eight-atom carboxylate (Li2 O4 C2 ) ring at the γ-C site in a dimer. Insertion of tBuNCO gives a secondary amide at the γ-C site in a monomer with TMEDA chelating lithium. Double insertion of tBuNCO and (adventitious) oxygen gives a dimer with a (LiO)2 central core involving the latter source. Insertion of less bulky (iPrNCO) gives a dimer with dimerisation through the C=O bonds of the emergent secondary amide function.

15.
Angew Chem Int Ed Engl ; 58(35): 12291-12296, 2019 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-31260154

RESUMO

Synthesized, isolated, and characterized by X-ray crystallography and NMR spectroscopic studies, lithium phosphidoaluminate iBu3 AlPPh2 Li(THF)3 has been tested as a catalyst for hydrophosphination of alkynes, alkenes, and carbodiimides. Based on the collective evidence of stoichiometric reactions, NMR monitoring studies, kinetic analysis, and DFT calculations, a mechanism involving deprotonation, alkyne insertion, and protonolysis is proposed for the [iBu3 AlHLi]2 aluminate catalyzed hydrophosphination of alkynes with diphenylphosphine. This study enhances further the development of transition-metal-free, atom-economical homogeneous catalysis using common sustainable main-group metals.

16.
Chemistry ; 24(31): 7786-7793, 2018 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-29603459

RESUMO

Defined as the transfer of ligands from one metal to another, transmetallation is a common reaction in organometallic chemistry. Its chemical celebrity stems from its role in important catalytic cycles of cross-coupling reactions such as those of Negishi, Sonogashira, Stille, or Suzuki. This article focuses on trans-metal-trapping (TMT), which could be construed as partially complete transmetallations. On mixing two distinct organometallic compounds, of for example lithium with aluminium or gallium, the two metals meet in a crossover co-complex, but the reaction ceases at that point and full transmetallation is not reached. Though in its infancy, trans-metal-trapping shows promise in transforming failed lithiations into successful lithiations and in stabilising sensitive carbanions through cooperative bimetallic effects making them more amenable to onward reactivity.

17.
Chemistry ; 24(58): 15669-15677, 2018 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-30101451

RESUMO

A series of dialkylphenylphosphines and their analogous aniline substrates have been metallated with the synergistic mixed-metal base [(TMEDA)Na(TMP)(CH2 SiMe3 )Mg(TMP)] 1. Different metallation regioselectivities for the substrates were observed, with predominately lateral or meta-magnesiated products isolated from solution. Three novel heterobimetallic complexes [(TMEDA)Na(TMP)(CH2 PCH3 Ph)Mg(TMP)] 2, [(TMEDA)Na(TMP)(m-C6 H4 PiPr2 )Mg(TMP)] 3 and [(TMEDA)Na(TMP)(m-C6 H4 NEt2 )Mg(TMP)]  4 and two homometallic complexes [{(TMEDA)Na(EtNC6 H5 )}2 ] 5 and [(TMEDA)Na2 (TMP)(C6 H5 PEt)]2  6 derived from homometallic metallation have been crystallographically characterised. Complex 6 is an unprecedented sodium-amide, sodium-phosphide hybrid with a rare (NaNNaP)2 ladder motif. These products reveal contrasting heterobimetallic deprotonation with homometallic induced ethene elimination reactivity. Solution studies of metallation mixtures and electrophilic iodine quenching reactions confirmed the metallation sites. In an attempt to rationalise the regioselectivity of the magnesiation reactions the C-H acidities of the six substrates were determined in THF solution using DFT calculations employing the M06-2X functional and cc-pVTZ Dunning's basis set.

18.
Chemistry ; 24(39): 9940-9948, 2018 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-29697160

RESUMO

A series of heteroleptic monoamido-monohydrido-dialkylaluminate complexes of general formula [iBu2 AlTMPHLi⋅donor] were synthesized and characterised in solution and in the solid state. Applying these complexes in catalytic hydroboration reactions with representative aldehydes and ketones reveals that all are competent, however a definite donor substituent effect is discernible. The bifunctional nature of the complexes is also probed by assessing their performance in metallation of a triazole and phenylacetylene and addition across pyrazine. These results lead to an example of phenylacetylene hydroboration, which likely proceeds via deprotonation, rather than insertion as observed with the aldehydes and ketones. Collectively, the results emphasise that reactivity is strongly influenced by both the mixed-metal constitution and mixed-ligand constitution of the new aluminates.

19.
Angew Chem Int Ed Engl ; 57(33): 10651-10655, 2018 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-29906339

RESUMO

Bimetallic lithium aluminates and neutral aluminum counterparts are compared as catalysts in hydroboration reactions with aldehydes, ketones, imines and alkynes. Possessing Li-Al cooperativity, ate catalysts are found to be generally superior. Catalytic activity is also influenced by the ligand set, alkyl and/or amido. Devoid of an Al-H bond, iBu2 Al(TMP) operates as a masked hydride reducing benzophenone through a ß-Η transfer process. This catalyst library therefore provides an entry point into the future design of Al catalysts targeting substrate specific transformations.

20.
Chemistry ; 23(66): 16853-16861, 2017 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-28940713

RESUMO

Equipped with excellent hydrocarbon solubility, the lithium hydride surrogate 1-lithium-2-tert-butyl-1,2-dihydropyridine (1tLi) functions as a precatalyst to convert Me2 NH⋅BH3 to [NMe2 BH2 ]2 (89 % conversion) under competitive conditions (2.5 mol %, 60 h, 80 °C, toluene solvent) to that of previously reported LiN(SiMe3 )2 . Sodium and potassium dihydropyridine congeners produce similar high yields of [NMe2 BH2 ]2 but require longer times. Switching the solvent to pyridine induces a remarkable change in the dehydrocoupling product ratio, with (NMe2 )2 BH favoured over [NMe2 BH2 ]2 (e.g., 94 %:2 % for 1tLi). Demonstrating its versatility, precatalyst 1tLi was also successful in promoting hydroboration reactions between pinacolborane and a selection of aldehydes and ketones. Most reactions gave near quantitative conversion to the hydroborated products in 15 minutes, though sterically demanding carbonyl substrates require longer times. The mechanisms of these rare examples of Group 1 metal-catalysed processes are discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA