Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Plant Cell ; 36(7): 2465-2490, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38513609

RESUMO

Plants in habitats with unpredictable conditions often have diversified bet-hedging strategies that ensure fitness over a wider range of variable environmental factors. A striking example is the diaspore (seed and fruit) heteromorphism that evolved to maximize species survival in Aethionema arabicum (Brassicaceae) in which external and endogenous triggers allow the production of two distinct diaspores on the same plant. Using this dimorphic diaspore model, we identified contrasting molecular, biophysical, and ecophysiological mechanisms in the germination responses to different temperatures of the mucilaginous seeds (M+ seed morphs), the dispersed indehiscent fruits (IND fruit morphs), and the bare non-mucilaginous M- seeds obtained by pericarp (fruit coat) removal from IND fruits. Large-scale comparative transcriptome and hormone analyses of M+ seeds, IND fruits, and M- seeds provided comprehensive datasets for their distinct thermal responses. Morph-specific differences in co-expressed gene modules in seeds, as well as in seed and pericarp hormone contents, identified a role of the IND pericarp in imposing coat dormancy by generating hypoxia affecting abscisic acid (ABA) sensitivity. This involved expression of morph-specific transcription factors, hypoxia response, and cell wall remodeling genes, as well as altered ABA metabolism, transport, and signaling. Parental temperature affected ABA contents and ABA-related gene expression and altered IND pericarp biomechanical properties. Elucidating the molecular framework underlying the diaspore heteromorphism can provide insight into developmental responses to globally changing temperatures.


Assuntos
Brassicaceae , Frutas , Regulação da Expressão Gênica de Plantas , Germinação , Sementes , Temperatura , Germinação/genética , Germinação/fisiologia , Sementes/genética , Sementes/fisiologia , Sementes/crescimento & desenvolvimento , Sementes/metabolismo , Brassicaceae/genética , Brassicaceae/fisiologia , Brassicaceae/metabolismo , Frutas/genética , Frutas/fisiologia , Frutas/crescimento & desenvolvimento , Frutas/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Transcriptoma/genética , Dormência de Plantas/genética , Dormência de Plantas/fisiologia , Ácido Abscísico/metabolismo
2.
Plant Cell ; 2023 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-37824826

RESUMO

Model species continue to underpin groundbreaking plant science research. At the same time, the phylogenetic resolution of the land plant Tree of Life continues to improve. The intersection of these two research paths creates a unique opportunity to further extend the usefulness of model species across larger taxonomic groups. Here we promote the utility of the Arabidopsis thaliana model species, especially the ability to connect its genetic and functional resources, to species across the entire Brassicales order. We focus on the utility of using genomics and phylogenomics to bridge the evolution and diversification of several traits across the Brassicales to the resources in Arabidopsis, thereby extending scope from a model species by establishing a "model clade". These Brassicales-wide traits are discussed in the context of both the model species Arabidopsis thaliana and the family Brassicaceae. We promote the utility of such a "model clade" and make suggestions for building global networks to support future studies in the model order Brassicales.

3.
Am J Bot ; 110(10): e16226, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37561651

RESUMO

PREMISE: Although Boechera (Boechereae, Brassicaceae) has become a plant model system for both ecological genomics and evolutionary biology, all previous phylogenetic studies have had limited success in resolving species relationships within the genus. The recent effective application of sequence data from target enrichment approaches to resolve the evolutionary relationships of several other challenging plant groups prompted us to investigate their usefulness in Boechera and Boechereae. METHODS: To resolve the phylogeny of Boechera and closely related genera, we utilized the Hybpiper pipeline to analyze two combined bait sets: Angiosperms353, with broad applicability across flowering plants; and a Brassicaceae-specific bait set designed for use in the mustard family. Relationships for 101 samples representing 81 currently recognized species were inferred from a total of 1114 low-copy nuclear genes using both supermatrix and species coalescence methods. RESULTS: Our analyses resulted in a well-resolved and highly supported phylogeny of the tribe Boechereae. Boechereae is divided into two major clades, one comprising all western North American species of Boechera, the other encompassing the eight other genera of the tribe. Our understanding of relationships within Boechera is enhanced by the recognition of three core clades that are further subdivided into robust regional species complexes. CONCLUSIONS: This study presents the first broadly sampled, well-resolved phylogeny for most known sexual diploid Boechera. This effort provides the foundation for a new phylogenetically informed taxonomy of Boechera that is crucial for its continued use as a model system.


Assuntos
Brassicaceae , Filogenia , Brassicaceae/genética , Evolução Biológica , Genômica
4.
Plant J ; 96(4): 748-760, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30101476

RESUMO

The small genus Ricotia (nine species, Brassicaceae) is confined to the eastern Mediterranean. By comparative chromosome painting and a dated multi-gene chloroplast phylogeny, we reconstructed the origin and subsequent evolution of Ricotia. The ancestral Ricotia genome originated through hybridization between two older genomes with n = 7 and n = 8 chromosomes, respectively, on the Turkish mainland during the Early Miocene (c. 17.8 million years ago, Ma). Since then, the allotetraploid (n = 15) genome has been altered by two independent descending dysploidies (DD) to n = 14 in Ricotia aucheri and the Tenuifolia clade (2 spp.). By the Late Miocene (c. 10 Ma), the latter clade started to evolve in the most diverse Ricotia core clade (6 spp.), the process preceded by a DD event to n = 13. It is noteworthy that this dysploidy was mediated by a unique chromosomal rearrangement, merging together the same two chromosomes as were merged during the origin of a fusion chromosome within the paternal n = 7 genome c. 20 Ma. This shows that within a time period of c. 8 Myr genome evolution can repeat itself and that structurally very similar chromosomes may originate repeatedly from the same ancestral chromosomes by different pathways (end-to-end translocation versus nested chromosome insertion).


Assuntos
Brassicaceae/genética , Cromossomos de Plantas , Evolução Molecular , Hibridização Genética , Brassicaceae/classificação , Aberrações Cromossômicas , Coloração Cromossômica , Genoma de Planta , Cariotipagem , Filogenia , Ploidias , Turquia
5.
Mol Biol Evol ; 35(11): 2618-2638, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30053121

RESUMO

Genes are "born," and eventually they "die." These processes shape the phenotypic evolution of organisms and are hence of great biological interest. If genes die in plants, they generally do so quite rapidly. Here, we describe the fate of GOA-like genes that evolve in a dramatically different manner. GOA-like genes belong to the subfamily of Bsister genes of MIKC-type MADS-box genes. Typical MIKC-type genes encode conserved transcription factors controlling plant development. We show that ABS-like genes, a clade of Bsister genes, are indeed highly conserved in crucifers (Brassicaceae) maintaining the ancestral function of Bsister genes in ovule and seed development. In contrast, their closest paralogs, the GOA-like genes, have been undergoing convergent gene death in Brassicaceae. Intriguingly, erosion of GOA-like genes occurred after millions of years of coexistence with ABS-like genes. We thus describe Delayed Convergent Asymmetric Degeneration, a so far neglected but possibly frequent pattern of duplicate gene evolution that does not fit classical scenarios. Delayed Convergent Asymmetric Degeneration of GOA-like genes may have been initiated by a reduction in the expression of an ancestral GOA-like gene in the stem group of Brassicaceae and driven by dosage subfunctionalization. Our findings have profound implications for gene annotations in genomics, interpreting patterns of gene evolution and using genes in phylogeny reconstructions of species.


Assuntos
Brassicaceae/genética , Evolução Molecular , Proteínas de Domínio MADS/genética , Filogenia , Pseudogenes , Seleção Genética
7.
New Phytol ; 221(3): 1434-1446, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30230555

RESUMO

Heteromorphic diaspores (fruits and seeds) are an adaptive bet-hedging strategy to cope with spatiotemporally variable environments, particularly fluctuations in favourable temperatures and unpredictable precipitation regimes in arid climates. We conducted comparative analyses of the biophysical and ecophysiological properties of the two distinct diaspores (mucilaginous seed (M+ ) vs indehiscent (IND) fruit) in the dimorphic annual Aethionema arabicum (Brassicaceae), linking fruit biomechanics, dispersal aerodynamics, pericarp-imposed dormancy, diaspore abscisic acid (ABA) concentration, and phenotypic plasticity of dimorphic diaspore production to its natural habitat and climate. Two very contrasting dispersal mechanisms of the A. arabicum dimorphic diaspores were revealed. Dehiscence of large fruits leads to the release of M+ seed diaspores, which adhere to substrata via seed coat mucilage, thereby preventing dispersal (antitelechory). IND fruit diaspores (containing nonmucilaginous seeds) disperse by wind or water currents, promoting dispersal (telechory) over a longer range. The pericarp properties confer enhanced dispersal ability and degree of dormancy on the IND fruit morph to support telechory, while the M+ seed morph supports antitelechory. Combined with the phenotypic plasticity to produce more IND fruit diaspores in colder temperatures, this constitutes a bet-hedging survival strategy to magnify the prevalence in response to selection pressures acting over hilly terrain.


Assuntos
Adaptação Fisiológica , Fenômenos Biofísicos , Brassicaceae/fisiologia , Frutas/fisiologia , Dispersão de Sementes/fisiologia , Sementes/fisiologia , Fenômenos Biomecânicos , Ecossistema , Germinação/fisiologia , Solo , Água , Vento
8.
Plant Cell Environ ; 42(4): 1381-1392, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30316198

RESUMO

Fruit dimorphism and the production of glucosinolates (GSLs) are two specific life history traits found in the members of Brassicales, which aid to optimize seed dispersal and defence against antagonists, respectively. We hypothesized that the bipartite dispersal strategy demands a tight control over the production of fruit morphs with expectedly differential allocation of defensive anticipins (GSLs). In dimorphic Aethionema, herbivory by Plutella xylostella at a young stage triggered the production of more dehiscent (seeds released from fruit) than indehiscent fruit morphs (seeds enclosed within persistent pericarp) on the same plant upon maturity. Total GSL concentrations were highest in the mature seeds of dehiscent fruits from Aethionema arabicum and Aethionema saxatile among the different ontogenetic stages of the diaspores. Multivariate analyses of GSL profiles indicated significantly higher concentrations of specific indole GSLs in the diaspores, which require optimal defence after dispersal (i.e., seeds of dehiscent and fruit/pericarp of indehiscent fruit). Bioassays with a potentially coinhabitant fungus, Aspergillus quadrilineatus, support the distinct defensive potential of the diaspores corresponding to their GSL allocation. These findings indicate a two-tier morpho-chemical defence tactic of Aethionema via better protected fruit morphs and strategic provision of GSLs that optimize protection to the progeny for survival in nature.


Assuntos
Brassicaceae/crescimento & desenvolvimento , Frutas/crescimento & desenvolvimento , Glucosinolatos/metabolismo , Brassicaceae/metabolismo , Frutas/metabolismo , Herbivoria , Dispersão de Sementes , Sementes/crescimento & desenvolvimento , Sementes/metabolismo
9.
Plant Physiol ; 172(3): 1691-1707, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27702842

RESUMO

Understanding how plants cope with changing habitats is a timely and important topic in plant research. Phenotypic plasticity describes the capability of a genotype to produce different phenotypes when exposed to different environmental conditions. In contrast, the constant production of a set of distinct phenotypes by one genotype mediates bet hedging, a strategy that reduces the temporal variance in fitness at the expense of a lowered arithmetic mean fitness. Both phenomena are thought to represent important adaptation strategies to unstable environments. However, little is known about the underlying mechanisms of these phenomena, partly due to the lack of suitable model systems. We used phylogenetic and comparative analyses of fruit and seed anatomy, biomechanics, physiology, and environmental responses to study fruit and seed heteromorphism, a typical morphological basis of a bet-hedging strategy of plants, in the annual Brassicaceae species Aethionema arabicum Our results indicate that heteromorphism evolved twice within the Aethionemeae, including once for the monophyletic annual Aethionema clade. The dimorphism of Ae. arabicum is associated with several anatomic, biomechanical, gene expression, and physiological differences between the fruit and seed morphs. However, fruit ratios and numbers change in response to different environmental conditions. Therefore, the life-history strategy of Ae. arabicum appears to be a blend of bet hedging and plasticity. Together with the available genomic resources, our results pave the way to use this species in future studies intended to unravel the molecular control of heteromorphism and plasticity.


Assuntos
Brassicaceae/embriologia , Frutas/embriologia , Sementes/embriologia , Brassicaceae/anatomia & histologia , Brassicaceae/genética , Brassicaceae/ultraestrutura , Regulação para Baixo/genética , Frutas/genética , Frutas/ultraestrutura , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Genes Controladores do Desenvolvimento , Genes de Plantas , Germinação/genética , Modelos Biológicos , Fenótipo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Dispersão de Sementes , Sementes/genética , Sementes/ultraestrutura , Homologia de Sequência de Aminoácidos
10.
Am J Bot ; 104(7): 1042-1054, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28743759

RESUMO

PREMISE OF THE STUDY: The Irano-Turanian region harbors three biodiversity hotspots and ∼25% of Brassicaceae species are endemic to the region. Aethionema (∼61 species) is the sister lineage to the core Brassicaceae and occurs mainly in the Irano-Turanian region. The evolutionary important position of Aethionema makes it an ideal reference for broader comparative genetics and genomics. To understand the evolution of Aethionema, and for a broader understanding of crucifer evolution, a time-calibrated phylogenetic tree and biogeographical history of the genus is needed. METHODS: Seventy-six plastome coding regions and nuclear rDNA genes, mainly from herbarium material, covering 75% of all Aethionema species, were used to resolve a time-calibrated Aethionema phylogeny. The different clades were characterized based on four morphological characters. The ancestral area of Aethionema was estimated with historical biogeographical analyses. KEY RESULTS: Three well-supported major clades within Aethionema were resolved. The ancestral area reconstruction and divergence-time estimates are consistent with major dispersal events during the Pliocene from the Anatolian Diagonal. CONCLUSIONS: We find that most Aethionema lineages originated along the Anatolian Diagonal, a floristic bridge connecting the east to the west, during the Pliocene. The dispersal of Aethionema correlates with the local geological events, such as the uplift of the Anatolian and Iranian plateaus and the formation of the major mountain ranges of the Irano-Turanian region. Knowing the paleo-ecological context for the evolution of Aethionema, in addition to the other lineages of Brassicaceae, facilitates our broader understanding for trait evolution and species diversification across the Brassicaceae.

11.
Proc Natl Acad Sci U S A ; 111(34): E3571-80, 2014 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-25114251

RESUMO

Seed germination is an important life-cycle transition because it determines subsequent plant survival and reproductive success. To detect optimal spatiotemporal conditions for germination, seeds act as sophisticated environmental sensors integrating information such as ambient temperature. Here we show that the delay of germination 1 (DOG1) gene, known for providing dormancy adaptation to distinct environments, determines the optimal temperature for seed germination. By reciprocal gene-swapping experiments between Brassicaceae species we show that the DOG1-mediated dormancy mechanism is conserved. Biomechanical analyses show that this mechanism regulates the material properties of the endosperm, a seed tissue layer acting as germination barrier to control coat dormancy. We found that DOG1 inhibits the expression of gibberellin (GA)-regulated genes encoding cell-wall remodeling proteins in a temperature-dependent manner. Furthermore we demonstrate that DOG1 causes temperature-dependent alterations in the seed GA metabolism. These alterations in hormone metabolism are brought about by the temperature-dependent differential expression of genes encoding key enzymes of the GA biosynthetic pathway. These effects of DOG1 lead to a temperature-dependent control of endosperm weakening and determine the optimal temperature for germination. The conserved DOG1-mediated coat-dormancy mechanism provides a highly adaptable temperature-sensing mechanism to control the timing of germination.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/genética , Lepidium sativum/crescimento & desenvolvimento , Lepidium sativum/genética , Arabidopsis/fisiologia , Fenômenos Biomecânicos , Sequência Conservada , Diploide , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Germinação/genética , Germinação/fisiologia , Giberelinas/metabolismo , Lepidium sativum/fisiologia , Dados de Sequência Molecular , Mutação , Dormência de Plantas/genética , Dormência de Plantas/fisiologia , Plantas Geneticamente Modificadas , Sementes/crescimento & desenvolvimento , Temperatura
12.
Plant Cell ; 25(9): 3280-95, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24082009

RESUMO

This article describes the use of cytogenomic and molecular approaches to explore the origin and evolution of Cardamine schulzii, a textbook example of a recent allopolyploid, in its ~110-year history of human-induced hybridization and allopolyploidy in the Swiss Alps. Triploids are typically viewed as bridges between diploids and tetraploids but rarely as parental genomes of high-level hybrids and polyploids. The genome of the triploid semifertile hybrid Cardamine × insueta (2n = 24, RRA) was shown to combine the parental genomes of two diploid (2n = 2x = 16) species, Cardamine amara (AA) and Cardamine rivularis (RR). These parental genomes have remained structurally stable within the triploid genome over the >100 years since its origin. Furthermore, we provide compelling evidence that the alleged recent polyploid C. schulzii is not an autohexaploid derivative of C. × insueta. Instead, at least two hybridization events involving C. × insueta and the hypotetraploid Cardamine pratensis (PPPP, 2n = 4x-2 = 30) have resulted in the origin of the trigenomic hypopentaploid (2n = 5x-2 = 38, PPRRA) and hypohexaploid (2n = 6x-2 = 46, PPPPRA). These data show that the semifertile triploid hybrid can promote a merger of three different genomes and demonstrate how important it is to reexamine the routinely repeated textbook examples using modern techniques.


Assuntos
Evolução Biológica , Cardamine/genética , Genoma de Planta/genética , Instabilidade Genômica , Sequência de Bases , Dosagem de Genes , Hibridização Genética , Hibridização In Situ , Dados de Sequência Molecular , Filogenia , Poliploidia , Análise de Sequência de DNA , Especificidade da Espécie , Triploidia
13.
Plant J ; 73(5): 824-35, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23173897

RESUMO

In the Brassicaceae, indehiscent fruits evolved from dehiscent fruits several times independently. Here we use closely related wild species of the genus Lepidium as a model system to analyse the underlying developmental genetic mechanisms in a candidate gene approach. ALCATRAZ (ALC), INDEHISCENT (IND), SHATTERPROOF1 (SHP1) and SHATTERPROOF2 (SHP2) are known fruit developmental genes of Arabidopsis thaliana that are expressed in the fruit valve margin governing dehiscence zone formation. Comparative expression analysis by quantitative RT-PCR, Northern blot and in situ hybridization show that their orthologues from Lepidium campestre (dehiscent fruits) are similarly expressed at valve margins. In sharp contrast, expression of the respective orthologues is abolished in the corresponding tissue of indehiscent Lepidium appelianum fruits, indicating that changes in the genetic pathway identified in A. thaliana caused the transition from dehiscent to indehiscent fruits in the investigated species. As parallel mutations in different genes are quite unlikely, we conclude that the changes in gene expression patterns are probably caused by changes in upstream regulators of ALC, IND and SHP1/2, possible candidates from A. thaliana being FRUITFULL (FUL), REPLUMLESS (RPL) and APETALA2 (AP2). However, neither expression analyses nor functional tests in transgenic plants provided any evidence that the FUL or RPL orthologues of Lepidium were involved in evolution of fruit indehiscence in Lepidium. In contrast, stronger expression of AP2 in indehiscent compared to dehiscent fruits identifies AP2 as a candidate gene that deserves further investigation.


Assuntos
Frutas/genética , Regulação da Expressão Gênica de Plantas , Lepidium/genética , Proteínas de Plantas/genética , Arabidopsis/citologia , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Evolução Biológica , Brassicaceae/citologia , Brassicaceae/genética , Brassicaceae/crescimento & desenvolvimento , Frutas/citologia , Frutas/crescimento & desenvolvimento , Expressão Gênica , Proteínas de Homeodomínio/genética , Lepidium/citologia , Lepidium/crescimento & desenvolvimento , Mutação , Proteínas Nucleares/genética , Fenótipo , Filogenia , Plantas Geneticamente Modificadas , RNA de Plantas/genética , Análise de Sequência de DNA , Especificidade da Espécie , Regulação para Cima
14.
Plant Cell Physiol ; 55(1): e3, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24259684

RESUMO

The Brassicaceae family (mustards or crucifers) includes Arabidopsis thaliana as one of the most important model species in plant biology and a number of important crop plants such as the various Brassica species (e.g. cabbage, canola and mustard). Moreover, the family comprises an increasing number of species that serve as study systems in many fields of plant science and evolutionary research. However, the systematics and taxonomy of the family are very complex and access to scientifically valuable and reliable information linked to species and genus names and its interpretation are often difficult. BrassiBase is a continuously developing and growing knowledge database (http://brassibase.cos.uni-heidelberg.de) that aims at providing direct access to many different types of information ranging from taxonomy and systematics to phylo- and cytogenetics. Providing critically revised key information, the database intends to optimize comparative evolutionary research in this family and supports the introduction of the Brassicaceae as the model family for evolutionary biology and plant sciences. Some features that should help to accomplish these goals within a comprehensive taxonomic framework have now been implemented in the new version 1.1.9. A 'Phylogenetic Placement Tool' should help to identify critical accessions and germplasm and provide a first visualization of phylogenetic relationships. The 'Cytogenetics Tool' provides in-depth information on genome sizes, chromosome numbers and polyploidy, and sets this information into a Brassicaceae-wide context.


Assuntos
Evolução Biológica , Brassicaceae/genética , Bases de Dados Genéticas , Análise Citogenética , Filogenia , Interface Usuário-Computador
15.
New Phytol ; 203(4): 1096-1108, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24916080

RESUMO

Recently formed allopolyploids represent an excellent system to study the impacts of hybridization and genomic duplication on genome structure and evolution. Here we explored the 35SrRNA genes (rDNA) in the Cardamine × schulzii allohexaploid that was formed by two subsequent hybridization events within the past c. 150 yr. The rDNA loci were analyzed by cloning, next generation sequencing (NGS), RT-PCR and FISH methods. The primary C. × insueta triploid hybrid derived from C. rivularis (♀) and C. amara (♂) had gene ratios highly skewed towards maternal sequences. Similarly, C. × schulzii, originating from the secondary hybridization event involving C. × insueta (♀) and C. pratensis (♂), showed a reduction in paternal rDNA homeologs despite an excess of chromosomes inherited from C. pratensis. We also identified novel rDNA loci in C. × schulzii, suggesting that lost loci might be slowly reinstalled by translocation (but not recombination) of genes from partner genomes. Prevalent clonal propagation of allopolyploids, C. × insueta and C. × schulzii, indicates that concerted evolution of rDNA may occur in the absence of extensive meiotic cycles. Adoption of NGS in rDNA variant analysis is highly informative for deciphering the evolutionary histories of allopolyploid species with ongoing homogenization processes.


Assuntos
Cardamine/genética , Cruzamentos Genéticos , DNA Ribossômico/genética , Loci Gênicos , Poliploidia , Sequência de Bases , Cromossomos de Plantas/genética , Clonagem Molecular , DNA Espaçador Ribossômico/genética , Regulação da Expressão Gênica de Plantas , Variação Genética , Genoma de Planta , Sequenciamento de Nucleotídeos em Larga Escala , Filogenia , Especificidade da Espécie
16.
Plant Physiol ; 161(4): 1903-17, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23426197

RESUMO

Seed dormancy is a block to the completion of germination of an intact viable seed under favorable conditions and is an adaptive and agronomically important trait. Thus, elucidating conserved features of dormancy mechanisms is of great interest. The worldwide-distributed genus Lepidium (Brassicaceae) is well suited for cross-species comparisons investigating the origin of common or specific early-life-history traits. We show here that homologs of the seed dormancy-specific gene delay of germination1 (DOG1) from Arabidopsis (Arabidopsis thaliana) are widespread in the genus Lepidium. The highly dormant Lepidium papillosum is a polyploid species and possesses multiple structurally diversified DOG1 genes (LepaDOG1), some being expressed in seeds. We used the largely elongated and well-structured infructescence of L. papillosum for studying primary dormancy induction during seed development and maturation with high temporal resolution. Using simultaneous germination assays and marker protein expression detection, we show that LepaDOG1 proteins are expressed in seeds during maturation prior to dormancy induction. Accumulation of LepaDOG1 takes place in seeds that gain premature germinability before and during the seed-filling stage and declines during the late maturation and desiccation phase when dormancy is induced. These analyses of the Lepidium DOG1 genes and their protein expression patterns highlight similarities and species-specific differences of primary dormancy induction mechanism(s) in the Brassicaceae.


Assuntos
Evolução Molecular , Genes de Plantas/genética , Lepidium/crescimento & desenvolvimento , Lepidium/genética , Dormência de Plantas/genética , Proteínas de Plantas/genética , Sementes/crescimento & desenvolvimento , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Brassicaceae/genética , Cromossomos de Plantas/genética , Clonagem Molecular , Frutas/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Lepidium/anatomia & histologia , Dados de Sequência Molecular , Filogenia , Proteínas de Plantas/metabolismo , Sementes/genética
17.
Mol Biol Evol ; 29(4): 1241-54, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22135189

RESUMO

Evolution of floral monosymmetry is thought to be a major driving force of angiosperm radiation, making angiosperms the most successful land plant group in terms of species richness. Monosymmetry evolved from a polysymmetric ancestor repeatedly in different angiosperm lineages, where it likely facilitated diversification through the interaction with insects. Most monosymmetric taxa are thus dominated by monosymmetric members. However, in the Brassicaceae, only few members develop a monosymmetric corolla with two petal pairs of unequal size, making them an ideal system to study the evolution of molecular mechanisms enhancing flower complexity. Monosymmetry is controlled by the TCP transcription factors that belong to the CYC2 clade in distantly related taxa. In Iberis amara, the first crucifer analyzed in terms of monosymmetry development, unequal corolla formation is due to a stronger CYC2 clade gene expression in the smaller adaxial petals compared with the larger abaxial ones. Phylogenetic reconstruction of the crucifer family reveals that the monosymmetric genera Iberis, Calepina, and Teesdalia belong to one major crucifer lineage. Monosymmetry is most pronounced in Iberis and less so in Calepina and Teesdalia, with a positive dosage-dependent correlation between the strength of a CYC2 expression difference and the extent of monosymmetry formation. An early adaxial CYC2 expression in floral meristems, observed in many distantly related taxa, might have facilitated the repeated evolution of CYC2-controlled monosymmetry. Comparison of early and late CYC2 expression in monosymmetric and polysymmetric crucifers representative for the four major crucifer lineages reveals that an adaxial CYC2 expression in floral meristems is likely ancestral for the Brassicaceae. However, it got lost in all analyzed monosymmetric members and is, as such, not a prerequisite for the establishment of corolla monosymmetry in crucifers. Here, monosymmetry evolved via a heterochronic CYC2 expression shift from an ancestral early adaxial expression in floral meristems to an adaxial CYC2 transcript accumulation later in petal development. This study emphasizes the potential of regulatory changes in the evolution of morphological novelties, like corolla monosymmetry in the Brassicaceae. In combination with a corymboid inflorescence, monosymmetry might have served as a key invention driving diversification in the genus Iberis comprising more than 20 monosymmetric species.


Assuntos
Brassicaceae/anatomia & histologia , Brassicaceae/genética , Evolução Molecular , Flores/anatomia & histologia , Flores/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Meristema/química , Meristema/metabolismo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
18.
Plant Cell ; 22(7): 2277-90, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20639445

RESUMO

Mesopolyploid whole-genome duplication (WGD) was revealed in the ancestry of Australian Brassicaceae species with diploid-like chromosome numbers (n = 4 to 6). Multicolor comparative chromosome painting was used to reconstruct complete cytogenetic maps of the cryptic ancient polyploids. Cytogenetic analysis showed that the karyotype of the Australian Camelineae species descended from the eight ancestral chromosomes (n = 8) through allopolyploid WGD followed by the extensive reduction of chromosome number. Nuclear and maternal gene phylogenies corroborated the hybrid origin of the mesotetraploid ancestor and suggest that the hybridization event occurred approximately 6 to 9 million years ago. The four, five, and six fusion chromosome pairs of the analyzed close relatives of Arabidopsis thaliana represent complex mosaics of duplicated ancestral genomic blocks reshuffled by numerous chromosome rearrangements. Unequal reciprocal translocations with or without preceeding pericentric inversions and purported end-to-end chromosome fusions accompanied by inactivation and/or loss of centromeres are hypothesized to be the main pathways for the observed chromosome number reduction. Our results underline the significance of multiple rounds of WGD in the angiosperm genome evolution and demonstrate that chromosome number per se is not a reliable indicator of ploidy level.


Assuntos
Arabidopsis/genética , Diploide , Cromossomos de Plantas , Cariotipagem , Dados de Sequência Molecular , Filogenia
19.
PhytoKeys ; 220: 127-144, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37251613

RESUMO

Based on recent achievements in phylogenetic studies of the Brassicaceae, a novel infrafamilial classification is proposed that includes major improvements at the subfamilial and supertribal levels. Herein, the family is subdivided into two subfamilies, Aethionemoideae (subfam. nov.) and Brassicoideae. The Brassicoideae, with 57 of the 58 tribes of Brassicaceae, are further partitioned into five supertribes, including the previously recognized Brassicodae and the newly established Arabodae, Camelinodae, Heliophilodae, and Hesperodae. Additional tribus-level contributions include descriptions of the newly recognized Arabidopsideae, Asperuginoideae, Hemilophieae, Schrenkielleae, and resurrection of the Chamireae and Subularieae. Further detailed comments on 17 tribes in need of clarifications are provided.

20.
Curr Biol ; 33(19): 4052-4068.e6, 2023 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-37659415

RESUMO

The mustard family (Brassicaceae) is a scientifically and economically important family, containing the model plant Arabidopsis thaliana and numerous crop species that feed billions worldwide. Despite its relevance, most phylogenetic trees of the family are incompletely sampled and often contain poorly supported branches. Here, we present the most complete Brassicaceae genus-level family phylogenies to date (Brassicaceae Tree of Life or BrassiToL) based on nuclear (1,081 genes, 319 of the 349 genera; 57 of the 58 tribes) and plastome (60 genes, 265 genera; all tribes) data. We found cytonuclear discordance between the two, which is likely a result of rampant hybridization among closely and more distantly related lineages. To evaluate the impact of such hybridization on the nuclear phylogeny reconstruction, we performed five different gene sampling routines, which increasingly removed putatively paralog genes. Our cleaned subset of 297 genes revealed high support for the tribes, whereas support for the main lineages (supertribes) was moderate. Calibration based on the 20 most clock-like nuclear genes suggests a late Eocene to late Oligocene origin of the family. Finally, our results strongly support a recently published new family classification, dividing the family into two subfamilies (one with five supertribes), together representing 58 tribes. This includes five recently described or re-established tribes, including Arabidopsideae, a monogeneric tribe accommodating Arabidopsis without any close relatives. With a worldwide community of thousands of researchers working on Brassicaceae and its diverse members, our new genus-level family phylogeny will be an indispensable tool for studies on biodiversity and plant biology.


Assuntos
Arabidopsis , Brassicaceae , Filogenia , Brassicaceae/genética , Arabidopsis/genética , Biodiversidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA