Assuntos
Pesquisas com Embriões , Guias como Assunto/normas , Pesquisa com Células-Tronco , Animais , Pesquisas com Embriões/ética , Embrião de Mamíferos , Edição de Genes/normas , Humanos , Terapia de Substituição Mitocondrial/normas , Modelos Biológicos , Organoides , Sociedades Científicas/normas , Pesquisa com Células-Tronco/ética , Ciência Translacional Biomédica/normasRESUMO
Human pluripotent stem cells (hPSCs), derived from individuals or genetically modified with disease-related mutations and variants, have revolutionised studies of human disease. Researchers are beginning to exploit the extraordinary potential of stem cell technology to screen for new drugs to treat intractable diseases, ideally without side-effects. However, a major problem is that the differentiated cell types on which these models are based are immature; they resemble fetal and not adult cells. Here, we discuss the nature and hurdles of hPSC maturation, using cardiomyocytes as an example. We review methods used to induce cardiomyocyte maturation in culture and consider remaining challenges for their integration into research on human disease and drug development pipelines.
Assuntos
Células-Tronco Pluripotentes Induzidas , Células-Tronco Pluripotentes , Humanos , Miócitos Cardíacos/metabolismo , Diferenciação CelularRESUMO
Stem cell research is the product of cumulative, integrated effort between and within laboratories and disciplines. The many collaborative steps that lead to that special "Eureka moment", when something that has been a puzzle perhaps for years suddenly become clear, is among the greatest pleasures of a scientific career. In this essay, the serendipitous pathway from first acquaintance with pluripotent stem cells to advanced cardiovascular models that emerged from studying development and disease will be described. Perhaps inspiration for later generations of stem cell researchers simply to follow whatever they find interesting.
RESUMO
Major advancements in human pluripotent stem cell (hPSC) technology over recent years have yielded valuable tools for cardiovascular research. Multi-cell type 3-dimensional (3D) cardiac models in particular, are providing complementary approaches to animal studies that are better representatives than simple 2-dimensional (2D) cultures of differentiated hPSCs. These human 3D cardiac models can be broadly divided into two categories; namely those generated through aggregating pre-differentiated cells and those that form self-organizing structures during their in vitro differentiation from hPSCs. These models can either replicate aspects of cardiac development or enable the examination of interactions among constituent cell types, with some of these models showing increased maturity compared with 2D systems. Both groups have already emerged as physiologically relevant pre-clinical platforms for studying heart disease mechanisms, exhibiting key functional attributes of the human heart. In this review, we describe the different cardiac organoid models derived from hPSCs, their generation methods, applications in cardiovascular disease research and use in drug screening. We also address their current limitations and challenges as pre-clinical testing platforms and propose potential improvements to enhance their efficacy in cardiac drug discovery.
Assuntos
Células-Tronco Pluripotentes , Humanos , Células-Tronco Pluripotentes/citologia , Diferenciação Celular , Organoides/citologia , Animais , Coração/fisiologia , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Avaliação Pré-Clínica de Medicamentos/métodos , Doenças Cardiovasculares/metabolismo , Modelos CardiovascularesRESUMO
The ability to differentiate human-induced pluripotent stem cells (hiPSCs) efficiently into defined cardiac lineages, such as cardiomyocytes and cardiac endothelial cells, is crucial to study human heart development and model cardiovascular diseases in vitro. The mechanisms underlying the specification of these cell types during human development are not well understood which limits fine-tuning and broader application of cardiac model systems. Here, we used the expression of ETV2, a master regulator of hematoendothelial specification in mice, to identify functionally distinct subpopulations during the co-differentiation of endothelial cells and cardiomyocytes from hiPSCs. Targeted analysis of single-cell RNA-sequencing data revealed differential ETV2 dynamics in the 2 lineages. A newly created fluorescent reporter line allowed us to identify early lineage-predisposed states and show that a transient ETV2-high-state initiates the specification of endothelial cells. We further demonstrated, unexpectedly, that functional cardiomyocytes can originate from progenitors expressing ETV2 at a low level. Our study thus sheds light on the in vitro differentiation dynamics of 2 important cardiac lineages.
Assuntos
Células Endoteliais , Células-Tronco Pluripotentes Induzidas , Animais , Camundongos , Humanos , Células Endoteliais/metabolismo , Miócitos Cardíacos/metabolismo , Regulação para Cima , Diferenciação Celular/genética , Endotélio/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismoRESUMO
BACKGROUND AIMS: Few human induced pluripotent stem cell (hiPSC) lines are Good Manufacturing Practice (GMP)-compliant, limiting the clinical use of hiPSC-derived products. Here, we addressed this by establishing and validating an in-house platform to produce GMP-compliant hiPSCs that would be appropriate for producing both allogeneic and autologous hiPSC-derived products. METHODS: Our standard research protocol for hiPSCs production was adapted and translated into a GMP-compliant platform. In addition to the generation of GMP-compliant hiPSC, the platform entails the methodology for donor recruitment, consent and screening, donor material procurement, hiPSCs manufacture, in-process control, specific QC test validation, QC testing, product release, hiPSCs storage and stability testing. For platform validation, one test run and three production runs were performed. Highest-quality lines were selected to establish master cell banks (MCBs). RESULTS: Two MCBs were successfully released under GMP conditions. They demonstrated safety (sterility, negative mycoplasma, endotoxins <5.0 EU/mL and negative adventitious agents), cell identity (>75% of cells expressing markers of undifferentiated state, identical STR profile, normal karyotype in >20 metaphases), purity (negative residual vectors and no plasmid integration in the genome) and potency (expression of at least two of the three markers for each of the three germ layers). In addition, directed differentiation to somitoids (skeletal muscle precursors) and six potential clinical products from all three germ layers was achieved: pancreatic islets (endoderm), kidney organoids and cardiomyocytes (mesoderm), and keratinocytes, GABAergic interneurons and inner-ear organoids (ectoderm). CONCLUSIONS: We successfully developed and validated a platform for generating GMP-compliant hiPSC lines. The two MCBs released were shown to differentiate into clinical products relevant for our own and other regenerative medicine interests.
Assuntos
Diferenciação Celular , Células-Tronco Pluripotentes Induzidas , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Técnicas de Cultura de Células/métodos , Linhagem CelularRESUMO
Worldwide increases in life expectancy have been paralleled by a greater prevalence of chronic and age-associated disorders, particularly of the cardiovascular, neural and metabolic systems. This has not been met by commensurate development of new drugs and therapies, which is in part owing to the difficulty in modelling human diseases in laboratory assays or experimental animals. Patient-specific induced pluripotent stem (iPS) cells are an emerging paradigm that may address this. Reprogrammed somatic cells from patients are already applied in disease modelling, drug testing and drug discovery, thus enabling researchers to undertake studies for treating diseases 'in a dish', which was previously inconceivable.
Assuntos
Células-Tronco Pluripotentes Induzidas , Modelos Biológicos , Envelhecimento , Animais , Bioengenharia , Doenças Cardiovasculares/fisiopatologia , Doenças Cardiovasculares/terapia , Diferenciação Celular , Células Cultivadas , Descoberta de Drogas , Humanos , Doenças Metabólicas/fisiopatologia , Doenças Metabólicas/terapia , Miócitos Cardíacos/fisiologia , Doenças Neurodegenerativas/fisiopatologia , Doenças Neurodegenerativas/terapia , Neurônios/fisiologiaRESUMO
The National Center for Advancing Translational Sciences (NCATS) Assay Guidance Manual (AGM) Workshop on 3D Tissue Models for Antiviral Drug Development, held virtually on 7-8 June 2022, provided comprehensive coverage of critical concepts intended to help scientists establish robust, reproducible, and scalable 3D tissue models to study viruses with pandemic potential. This workshop was organized by NCATS, the National Institute of Allergy and Infectious Diseases, and the Bill and Melinda Gates Foundation. During the workshop, scientific experts from academia, industry, and government provided an overview of 3D tissue models' utility and limitations, use of existing 3D tissue models for antiviral drug development, practical advice, best practices, and case studies about the application of available 3D tissue models to infectious disease modeling. This report includes a summary of each workshop session as well as a discussion of perspectives and challenges related to the use of 3D tissues in antiviral drug discovery.
Assuntos
Antivirais , Descoberta de Drogas , Antivirais/farmacologia , Antivirais/uso terapêutico , BioensaioRESUMO
In recent decades, drug development costs have increased by approximately a hundredfold, and yet about 1 in 7 licensed drugs are withdrawn from the market, often due to cardiotoxicity. This review considers whether technologies using human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) could complement existing assays to improve discovery and safety while reducing socioeconomic costs and assisting with regulatory guidelines on cardiac safety assessments. We draw on lessons from our own work to suggest a panel of 12 drugs that will be useful in testing the suitability of hiPSC-CM platforms to evaluate contractility. We review issues, including maturity versus complexity, consistency, quality, and cost, while considering a potential need to incorporate auxiliary approaches to compensate for limitations in hiPSC-CM technology. We give examples on how coupling hiPSC-CM technologies with Cas9/CRISPR genome engineering is starting to be used to personalize diagnosis, stratify risk, provide mechanistic insights, and identify new pathogenic variants for cardiovascular disease.
Assuntos
Cardiotoxicidade/prevenção & controle , Descoberta de Drogas/métodos , Miócitos Cardíacos/efeitos dos fármacos , Animais , Sistemas CRISPR-Cas/genética , Desenvolvimento de Medicamentos/métodos , Engenharia Genética , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Miócitos Cardíacos/citologia , Medicina de Precisão/métodosRESUMO
Electrical activity and intracellular Ca2+ transients are key features of cardiomyocytes. They can be measured using organic voltage- and Ca2+-sensitive dyes but their photostability and phototoxicity mean they are unsuitable for long-term measurements. Here, we investigated whether genetically encoded voltage and Ca2+ indicators (GEVIs and GECIs) delivered as modified mRNA (modRNA) into human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) would be accurate alternatives allowing measurements over long periods. These indicators were detected in hiPSC-CMs for up to 7 days after transfection and did not affect responses to proarrhythmic compounds. Furthermore, using the GEVI ASAP2f we observed action potential prolongation in long QT syndrome models, while the GECI jRCaMP1b facilitated the repeated evaluation of Ca2+ handling responses for various tyrosine kinase inhibitors. This study demonstrated that modRNAs encoding optogenetic constructs report cardiac physiology in hiPSC-CMs without toxicity or the need for stable integration, illustrating their value as alternatives to organic dyes or other gene delivery methods for expressing transgenes.
Assuntos
Células-Tronco Pluripotentes Induzidas , Potenciais de Ação/fisiologia , Cálcio , Corantes , Humanos , Miócitos Cardíacos , Optogenética , RNA Mensageiro/genéticaRESUMO
The ability of human pluripotent stem cells to form all cells of the body has provided many opportunities to study disease and produce cells that can be used for therapy in regenerative medicine. Even though beating cardiomyocytes were among the first cell types to be differentiated from human pluripotent stem cell, cardiac applications have advanced more slowly than those, for example, for the brain, eye, and pancreas. This is, in part, because simple 2-dimensional human pluripotent stem cell cardiomyocyte cultures appear to need crucial functional cues normally present in the 3-dimensional heart structure. Recent tissue engineering approaches combined with new insights into the dialogue between noncardiomyocytes and cardiomyocytes have addressed and provided solutions to issues such as cardiomyocyte immaturity and inability to recapitulate adult heart values for features like contraction force, electrophysiology, or metabolism. Three-dimensional bioengineered heart tissues are thus poised to contribute significantly to disease modeling, drug discovery, and safety pharmacology, as well as provide new modalities for heart repair. Here, we review the current status of 3-dimensional engineered heart tissues.
Assuntos
Coração/fisiologia , Miócitos Cardíacos/citologia , Células-Tronco Pluripotentes/citologia , Regeneração , Engenharia Tecidual/métodos , Animais , Técnicas de Reprogramação Celular/métodos , Humanos , Miócitos Cardíacos/metabolismo , Células-Tronco Pluripotentes/metabolismoRESUMO
Multipotent cardiac progenitor cells are found in the fetal and adult heart of many mammalian species including humans and form as intermediates during the differentiation of embryonic stem cells. Despite similar biological properties, the molecular identities of these different cardiac progenitor cell populations appear to be distinct. Elucidating the origins and lineage relationships of these cell populations will accelerate clinical applications such as drug screening and cell therapy as well as shedding light on the pathogenic mechanisms underlying cardiac diseases.
Assuntos
Miocárdio/citologia , Células-Tronco/citologia , Animais , Coração/embriologia , Cardiopatias/fisiopatologia , Cardiopatias/terapia , Humanos , Camundongos , Miócitos Cardíacos/citologia , Transplante de Células-TroncoRESUMO
The anthracycline doxorubicin (Doxo) and its analogs daunorubicin (Daun), epirubicin (Epi), and idarubicin (Ida) have been cornerstones of anticancer therapy for nearly five decades. However, their clinical application is limited by severe side effects, especially dose-dependent irreversible cardiotoxicity. Other detrimental side effects of anthracyclines include therapy-related malignancies and infertility. It is unclear whether these side effects are coupled to the chemotherapeutic efficacy. Doxo, Daun, Epi, and Ida execute two cellular activities: DNA damage, causing double-strand breaks (DSBs) following poisoning of topoisomerase II (Topo II), and chromatin damage, mediated through histone eviction at selected sites in the genome. Here we report that anthracycline-induced cardiotoxicity requires the combination of both cellular activities. Topo II poisons with either one of the activities fail to induce cardiotoxicity in mice and human cardiac microtissues, as observed for aclarubicin (Acla) and etoposide (Etop). Further, we show that Doxo can be detoxified by chemically separating these two activities. Anthracycline variants that induce chromatin damage without causing DSBs maintain similar anticancer potency in cell lines, mice, and human acute myeloid leukemia patients, implying that chromatin damage constitutes a major cytotoxic mechanism of anthracyclines. With these anthracyclines abstained from cardiotoxicity and therapy-related tumors, we thus uncoupled the side effects from anticancer efficacy. These results suggest that anthracycline variants acting primarily via chromatin damage may allow prolonged treatment of cancer patients and will improve the quality of life of cancer survivors.
Assuntos
Antineoplásicos/efeitos adversos , Cromatina/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , Doxorrubicina/efeitos adversos , Animais , Linhagem Celular , Doxorrubicina/análogos & derivados , Doxorrubicina/síntese química , Doxorrubicina/metabolismo , Doxorrubicina/uso terapêutico , Cardiopatias/induzido quimicamente , Histonas , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , CamundongosRESUMO
Pluripotency describes the ability of stem cells to differentiate into derivatives of the three germ layers. In reporting new human pluripotent stem cell lines, their clonal derivatives or the safety of differentiated derivatives for transplantation, assessment of pluripotency is essential. Historically, the ability to form teratomas in vivo containing different somatic cell types following injection into immunodeficient mice has been regarded as functional evidence of pluripotency. In addition, the teratomas formed can be analyzed for the presence of malignant cells. However, use of this assay has been subject to scrutiny for ethical reasons on animal use and due to the lack of standardization in how it is used, therefore questioning its accuracy. In vitro alternatives for assessing pluripotency have been developed such as ScoreCard and PluriTest. However, it is unknown whether this has resulted in reduced use of the teratoma assay. Here, we systematically reviewed how the teratoma assay was reported in publications between 1998 (when the first human embryonic stem cell line was described) and 2021. Our analysis of >400 publications showed that in contrast to expectations, reporting of the teratoma assay has not improved: methods are not yet standardized, and malignancy was examined in only a relatively small percentage of assays. In addition, its use has not decreased since the implementation of the ARRIVE guidelines on reduction of animal use (2010) or the introduction of ScoreCard (2015) and PluriTest (2011). The teratoma assay is still the preferred method to assess the presence of undifferentiated cells in a differentiated cell product for transplantation since the in vitro assays alone are not generally accepted by the regulatory authorities for safety assessment. This highlights the remaining need for an in vitro assay to test malignancy of stem cells.
Assuntos
Células-Tronco Pluripotentes , Teratoma , Humanos , Animais , Camundongos , Células-Tronco Pluripotentes/metabolismo , Teratoma/patologia , Células-Tronco Embrionárias/metabolismo , Linhagem Celular , Injeções , Diferenciação CelularRESUMO
OBJECTIVES: To study the mechanism by which the readthrough mutation in TNFRSF11B, encoding osteoprotegerin (OPG) with additional 19 amino acids at its C-terminus (OPG-XL), causes the characteristic bidirectional phenotype of subchondral bone turnover accompanied by cartilage mineralization in chondrocalcinosis patients. METHODS: OPG-XL was studied by human induced pluripotent stem cells expressing OPG-XL and two isogenic CRISPR/Cas9-corrected controls in cartilage and bone organoids. Osteoclastogenesis was studied with monocytes from OPG-XL carriers and matched healthy controls followed by gene expression characterization. Dual energy X-ray absorptiometry scans and MRI analyses were used to characterize the phenotype of carriers and non-carriers of the mutation. RESULTS: Human OPG-XL carriers relative to sex- and age-matched controls showed, after an initial delay, large active osteoclasts with high number of nuclei. By employing hiPSCs expressing OPG-XL and isogenic CRISPR/Cas9-corrected controls to established cartilage and bone organoids, we demonstrated that expression of OPG-XL resulted in excessive fibrosis in cartilage and high mineralization in bone accompanied by marked downregulation of MGP, encoding matrix Gla protein, and upregulation of DIO2, encoding type 2 deiodinase, gene expression, respectively. CONCLUSIONS: The readthrough mutation at CCAL1 locus in TNFRSF11B identifies an unknown role for OPG-XL in subchondral bone turnover and cartilage mineralization in humans via DIO2 and MGP functions. Previously, OPG-XL was shown to affect binding between RANKL and heparan sulphate (HS) resulting in loss of immobilized OPG-XL. Therefore, effects may be triggered by deficiency in the immobilization of OPG-XL Since the characteristic bidirectional pathophysiology of articular cartilage calcification accompanied by low subchondral bone mineralization is also a hallmark of OA pathophysiology, our results are likely extrapolated to common arthropathies.
Assuntos
Calcinose , Cartilagem Articular , Condrocalcinose , Células-Tronco Pluripotentes Induzidas , Humanos , Remodelação Óssea , Calcinose/metabolismo , Cartilagem Articular/metabolismo , Condrocalcinose/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Mutação , Osteoprotegerina/genética , Osteoprotegerina/metabolismo , Ligante RANK/metabolismoRESUMO
Cartilage has little intrinsic capacity for repair, so transplantation of exogenous cartilage cells is considered a realistic option for cartilage regeneration. We explored whether human-induced pluripotent stem cells (hiPSCs) could represent such unlimited cell sources for neo-cartilage comparable to human primary articular chondrocytes (hPACs) or human bone marrow-derived mesenchymal stromal cells (hBMSCs). For this, chondroprogenitor cells (hiCPCs) and hiPSC-derived mesenchymal stromal cells (hiMSCs) were generated from two independent hiPSC lines and characterized by morphology, flow cytometry, and differentiation potential. Chondrogenesis was compared to hBMSCs and hPACs by histology, immunohistochemistry, and RT-qPCR, while similarities were estimated based on Pearson correlations using a panel of 20 relevant genes. Our data show successful differentiations of hiPSC into hiMSCs and hiCPCs. Characteristic hBMSC markers were shared between hBMSCs and hiMSCs, with the exception of CD146 and CD45. However, neo-cartilage generated from hiMSCs showed low resemblances when compared to hBMSCs (53%) and hPACs (39%) characterized by lower collagen type 2 and higher collagen type 1 expression. Contrarily, hiCPC neo-cartilage generated neo-cartilage more similar to hPACs (65%), with stronger expression of matrix deposition markers. Our study shows that taking a stepwise approach to generate neo-cartilage from hiPSCs via chondroprogenitor cells results in strong similarities to neo-cartilage of hPACs within 3 weeks following chondrogenesis, making them a potential candidate for regenerative therapies. Contrarily, neo-cartilage deposited by hiMSCs seems more prone to hypertrophic characteristics compared to hPACs. We therefore compared chondrocytes derived from hiMSCs and hiCPCs with hPACs and hBMSCs to outline similarities and differences between their neo-cartilage and establish their potential suitability for regenerative medicine and disease modelling.
Assuntos
Cartilagem/citologia , Condrócitos/citologia , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Mesenquimais/citologia , Cartilagem/metabolismo , Diferenciação Celular , Linhagem Celular , Condrócitos/metabolismo , Condrogênese , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Mesenquimais/metabolismo , TranscriptomaRESUMO
Research on mechanisms underlying monogenic cardiac diseases such as primary arrhythmias and cardiomyopathies has until recently been hampered by inherent limitations of heterologous cell systems, where mutant genes are expressed in noncardiac cells, and physiological differences between humans and experimental animals. Human-induced pluripotent stem cells (hiPSCs) have proven to be a game changer by providing new opportunities for studying the disease in the specific cell type affected, namely the cardiomyocyte. hiPSCs are particularly valuable because not only can they be differentiated into unlimited numbers of these cells, but they also genetically match the individual from whom they were derived. The decade following their discovery showed the potential of hiPSCs for advancing our understanding of cardiovascular diseases, with key pathophysiological features of the patient being reflected in their corresponding hiPSC-derived cardiomyocytes (the past). Now, recent advances in genome editing for repairing or introducing genetic mutations efficiently have enabled the disease etiology and pathogenesis of a particular genotype to be investigated (the present). Finally, we are beginning to witness the promise of hiPSC in personalized therapies for individual patients, as well as their application in identifying genetic variants responsible for or modifying the disease phenotype (the future). In this review, we discuss how hiPSCs could contribute to improving the diagnosis, prognosis, and treatment of an individual with a suspected genetic cardiac disease, thereby developing better risk stratification and clinical management strategies for these potentially lethal but treatable disorders.
Assuntos
Edição de Genes/métodos , Cardiopatias/congênito , Células-Tronco Pluripotentes/metabolismo , Diferenciação Celular , HumanosRESUMO
Hereditary Hemorrhagic Telangiectasia type 1 (HHT1) is an autosomal dominant inherited disease characterized by arteriovenous malformations and hemorrhage. HHT1 is caused by mutations in ENDOGLIN, which encodes an ancillary receptor for Transforming Growth Factor-ß/Bone Morphogenetic Protein-9 expressed in all vascular endothelial cells. Haploinsufficiency is widely accepted as the underlying mechanism for HHT1. However, it remains intriguing that only some, but not all, vascular beds are affected, as these causal gene mutations are present in vasculature throughout the body. Here, we have examined the endoglin expression levels in the blood vessels of multiple organs in mice and in humans. We found a positive correlation between low basal levels of endoglin and the general prevalence of clinical manifestations in selected organs. Endoglin was found to be particularly low in the skin, the earliest site of vascular lesions in HHT1, and even undetectable in the arteries and capillaries of heterozygous endoglin mice. Endoglin levels did not appear to be associated with organ-specific vascular functions. Instead, our data revealed a critical endoglin threshold compatible with the haploinsufficiency model, below which endothelial cells independent of their tissue of origin exhibited abnormal responses to Vascular Endothelial Growth Factor. Our results support the development of drugs promoting endoglin expression as potentially protective.
Assuntos
Endoglina/fisiologia , Endotélio Vascular/patologia , Mutação , Telangiectasia Hemorrágica Hereditária/complicações , Doenças Vasculares/patologia , Animais , Endotélio Vascular/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transdução de Sinais , Doenças Vasculares/etiologia , Doenças Vasculares/metabolismoRESUMO
Cardiovascular disease is often associated with cardiac remodeling, including cardiac fibrosis, which may lead to increased stiffness of the heart wall. This stiffness in turn may cause subsequent failure of cardiac myocytes, however the response of these cells to increased substrate stiffness is largely unknown. To investigate the contractile response of human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) to increased substrate stiffness, we generated a stable transgenic human pluripotent stem cell line expressing a fusion protein of α-Actinin and fluorescent mRubyII in a previously characterized NKX2.5-GFP reporter line. Cardiomyocytes differentiated from this line were subjected to a substrate with stiffness ranging from 4 kPa to 101 kPa, while contraction of sarcomeres and bead displacement in the substrate were measured for each single cardiomyocyte. We found that sarcomere dynamics in hPSC-CMs on polyacrylamide gels of increasing stiffness are not affected above physiological levels (21 kPa), but that contractile force increases up to a stiffness of 90 kPa, at which cell shortening, deducted from bead displacement, is significantly reduced compared to physiological stiffness. We therefore hypothesize that this discrepancy may be the cause of intracellular stress that leads to hypertrophy and consequent heart failure in vivo.
Assuntos
Actinina/metabolismo , Genes Reporter , Contração Miocárdica/fisiologia , Miócitos Cardíacos/metabolismo , Acrilamida/química , Actinina/genética , Sequência de Bases , Fenômenos Biomecânicos , Diferenciação Celular , Feminino , Fluorescência , Gelatina/química , Proteína Homeobox Nkx-2.5/metabolismo , Humanos , Miócitos Cardíacos/citologia , Células-Tronco Pluripotentes/citologia , Sarcômeros/metabolismo , Especificidade por SubstratoRESUMO
Cardiomyocytes and endothelial cells in the heart are in close proximity and in constant dialogue. Endothelium regulates the size of the heart, supplies oxygen to the myocardium and secretes factors that support cardiomyocyte function. Robust and predictive cardiac disease models that faithfully recapitulate native human physiology in vitro would therefore ideally incorporate this cardiomyocyte-endothelium crosstalk. Here, we have generated and characterized human cardiac microtissues in vitro that integrate both cell types in complex 3D structures. We established conditions for simultaneous differentiation of cardiomyocytes and endothelial cells from human pluripotent stem cells following initial cardiac mesoderm induction. The endothelial cells expressed cardiac markers that were also present in primary cardiac microvasculature, suggesting cardiac endothelium identity. These cell populations were further enriched based on surface markers expression, then recombined allowing development of beating 3D structures termed cardiac microtissues. This in vitro model was robustly reproducible in both embryonic and induced pluripotent stem cells. It thus represents an advanced human stem cell-based platform for cardiovascular disease modelling and testing of relevant drugs.