Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Molecules ; 29(6)2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38542864

RESUMO

This investigation involved an ab initio and Density Functional Theory (DFT) analysis of the hydrolysis mechanism and energetics in a borate network. The focus was on understanding how water molecules interact with and disrupt the borate network, an area where the experimental data are scarce and unreliable. The modeled system consisted of two boron atoms, bridging oxygen atoms, and varying numbers of water molecules. This setup allows for an exploration of hydrolysis under different environmental conditions, including the presence of OH- or H+ ions to simulate basic or acidic environments, respectively. Our investigation utilized both ab initio calculations at the MP2 and CCSD(T) levels and DFT with a range of exchange-correlation functionals. The findings indicate that the borate network is significantly more susceptible to hydrolysis in a basic environment, with respect to an acidic or to a neutral pH setting. The inclusion of explicit water molecules in the calculations can significantly affect the results, depending on the nature of the transition state. In fact, some transition states exhibited closed-ring configurations involving water and the boron-oxygen-boron network; in these cases, there were indeed more water molecules corresponding to lower energy barriers for the reaction, suggesting a crucial role of water in stabilizing the transition states. This study provides valuable insights into the hydrolysis process of borate networks, offering a detailed comparison between different computational approaches. The results demonstrate that the functionals B3LYP, PBE0, and wB97Xd closely approximated the reference MP2 and CCSD(T) calculated reaction pathways, both qualitatively in terms of the mechanism, and quantitatively in terms of the differences in the reaction barriers within the 0.1-0.2 eV interval for the most plausible reaction pathways. In addition, CAM-B3LYP also yielded acceptable results in all cases except for the most complicated pathway. These findings are useful for guiding further computational studies, including those employing machine learning approaches, and experimental investigations requiring accurate reference data for hydrolysis reactions in borate networks.

2.
Molecules ; 28(2)2023 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-36677634

RESUMO

Density functional theory (DFT) calculations allow us to reproduce the SERS (surface-enhanced Raman scattering) spectra of molecules adsorbed on nanostructured metal surfaces and extract the most information this spectroscopy is potentially able to provide. The latter point mainly concerns the anchoring mechanism and the bond strength between molecule and metal as well as the structural and electronic modifications of the adsorbed molecule. These findings are of fundamental importance for the application of this spectroscopic technique. This review presents and discusses some SERS-DFT studies carried out in Italy as a collaboration between the universities of Modena and Reggio-Emilia and of Florence, giving an overview of the information that we can extract with a combination of experimental SERS spectra and DFT modeling. In addition, a selection of the most recent studies and advancements on the DFT approach to SERS spectroscopy is reported with commentary.

3.
J Chem Phys ; 156(21): 214503, 2022 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-35676154

RESUMO

Despite great efforts over the past 50 years, the simulation of water still presents significant challenges and open questions. At room temperature and pressure, the collective molecular interactions and dynamics of water molecules may form local structural arrangements that are non-trivial to classify. Here, we employ a data-driven approach built on Smooth Overlap of Atomic Position (SOAP) that allows us to compare and classify how widely used classical models represent liquid water. Macroscopically, the obtained results are rationalized based on water thermodynamic observables. Microscopically, we directly observe how transient ice-like ordered environments may dynamically/statistically form in liquid water, even above freezing temperature, by comparing the SOAP spectra for different ice structures with those of the simulated liquid systems. This confirms recent ab initio-based calculations but also reveals how the emergence of ephemeral local ice-like environments in liquid water at room conditions can be captured by classical water models.

4.
Macromol Rapid Commun ; 42(1): e2000426, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33089579

RESUMO

The perylene bisimide derivative Paliogen Black (P-black) is proposed as a new chromogenic probe that shows visible (vis) and near-infrared (NIR) responses after mechanical solicitations of host linear low-density polyethylene (LLDPE) films. P-black is reported to display strong absorption in the vis spectrum and unusual reflective and cooling features in the NIR region. Uniaxial deformation of the 2.5, 5, and 10 wt% P-black/LLDPE films yields a dichroic absorption under polarized light with color variations attributed by the computational analysis to the distinct anisotropic behavior of the transition dipole moments of P-black chromophores. When LLDPE films are deformed, P-black aggregates reduce their size from ≈30-40 µm to ≈5-10 µm that, in turn, causes reflectivity losses of about 30-40% at the maximum elongation. This gives rise to warming of 5-6 °C of the locally oriented film placed in contact with a black substrate under the illumination with an IR lamp for 5 s. These features combined with the high sensitivity of the vis-NIR response toward mechanical solicitations render P-black as a new solution to detect uniaxial deformations of plastic films through both optical and thermal outputs.


Assuntos
Polietileno , Plásticos
5.
J Phys Chem A ; 123(32): 6854-6867, 2019 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-31322892

RESUMO

Heterogenization of RuL3 complexes on a support with proper anchor points provides a route toward design of green catalysts. In this paper, Ru(II) polypyridyl complexes are investigated with the aim to unravel the influence on the photocatalytic properties of varying nitrogen content in the ligands and of embedding the complex in a triazine-based covalent organic framework. To provide fundamental insight into the electronic mechanisms underlying this behavior, a computational study is performed. Both the ground and excited state properties of isolated and anchored ruthenium complexes are theoretically investigated by means of density functional theory and time-dependent density functional theory. Varying the ligands among 2,2'-bipyridine, 2,2'-bipyrimidine, and 2,2'-bipyrazine allows us to tune to a certain extent the optical gaps and the metal to ligand charge transfer excitations. Heterogenization of the complex within a CTF support has a significant effect on the nature and energy of the electronic transitions. The allowed transitions are significantly red-shifted toward the near IR region and involve transitions from states localized on the CTF toward ligands attached to the ruthenium. The study shows how variations in ligands and anchoring on proper supports allows us to increase the range of wavelengths that may be exploited for photocatalysis.

6.
Sensors (Basel) ; 19(12)2019 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-31208081

RESUMO

We have studied the adsorption of xanthine, a nucleobase present in human tissue and fluids that is involved in important metabolic processes, on citrate-reduced gold colloidal nanoparticles by means of surface-enhanced Raman scattering (SERS), absorption, and X-ray photoelectron spectroscopy (XPS) measurements, along with density functional theory (DFT) calculations. The citrate anions stabilize the colloidal suspensions by strongly binding the gold nanoparticles. However, these anions do not impair the adsorption of xanthine on positively-charged active sites present on the metal surface. We have obtained the Fourier transform (FT)-SERS spectra of adsorbed xanthine by laser excitation in the near infrared spectral region, where interference due to fluorescence emission does not usually occur. In fact, the addition of chloride ions to the Au/xanthine colloid induces the aggregation of the gold nanoparticles, whose plasmonic band is shifted to the near infrared region where there is the exciting laser line of the FT-Raman instrument. Hence, this analytical approach is potentially suitable for spectroscopic determination of xanthine directly in body fluids, avoiding fluorescence phenomena induced by visible laser irradiation.

7.
Phys Chem Chem Phys ; 18(8): 5974-80, 2016 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-26838159

RESUMO

The adsorption of methimazole on gold colloidal nanoparticles was investigated using a combination of surface-enhanced Raman scattering and density functional theory calculations, which allowed identifying the thiolate anion as the molecular species chemically interacting with the active sites of the gold surface, modeled as zero-charge metal adatoms, only through the sulfur atom. This result can be important for the use of these ligand/metal nanohybrids in the process of drug delivery. Moreover, functionalized gold nanoparticles are able to promote the Raman enhancement in the red-light region as well as in the near-infrared, where generally no fluorescence emission occurs. This paves the way for the use of these nanosystems in a biological environment, even in vivo experiments.


Assuntos
Coloide de Ouro/química , Nanopartículas Metálicas/química , Metimazol/química , Modelos Moleculares , Teoria Quântica , Análise Espectral Raman
8.
J Phys Chem A ; 119(21): 5088-98, 2015 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-25248052

RESUMO

An extensive benchmark of exchange-correlation functionals on the structure of the X-ray resolved phosphine and thiolate-protected Ag14-based nanocluster, named XMC1, is reported. Calculations were performed both on simplified model systems, with the complexity of the ligands greatly reduced, and on the complete XMC1 particle. Most of the density functionals that yielded good relaxed structures on analogous calculations on gold nanoclusters (viz. those employing the generalized gradient approximation) significantly deform the structure of XMC1. On the contrary, some of the exchange-correlation functionals including part of the exact Hartree-Fock exchange (hybrid functionals) reproduce the experimental geometry with minimal errors. In particular, the widely adopted B3LYP yields fairly accurate structures for XMC1, whereas it is outperformed by many other functionals (both hybrids and generalized gradient corrected) in similar calculations on analogous gold-based systems. Time-dependent density functional calculations have been employed to recover the experimental UV-vis spectrum. The present investigation shows that to correctly reproduce the optical feature of XMC1 the ligands cannot be omitted, because they interact with the metal core at energies much closer to the optical gap than in the case of gold-based nanoclusters of similar sizes. Due to this fact, a functional that accurately describes charge-transfer electronic transitions (such as the long-range corrected CAM-B3LYP) has to be adopted.

9.
Phys Chem Chem Phys ; 16(35): 18749-58, 2014 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-25075579

RESUMO

We present here a detailed time-dependent density-functional theory investigation aimed at systematically dissecting the electronic spectra of two thiolate and phosphine protected undecagold nanoclusters. Calculations performed on the experimental structures of Au11(PPh3)7Cl3 and Au11(PPh3)7(SPyr)3 show that ligands have negligible contributions in the visible region. Metal → ligand charge transfer transitions appear at energies well above the visible threshold, while transitions with some small ligand → metal and ligand → ligand character occur sporadically at even higher energies. Thus, the conjugation effect between the π-electrons of the ligand and electrons of gold, recently hypothesized to interpret the spectra of phosphine and thiolate-protected nanoclusters, is not confirmed by the results of this study.


Assuntos
Nanopartículas Metálicas/química , Compostos Organoáuricos/química , Fosfinas/química , Compostos de Sulfidrila/química , Elétrons , Ligantes , Teoria Quântica
10.
J Hazard Mater ; 469: 134004, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38521041

RESUMO

Chronic inflammation induced in vivo by mineral fibres, such as asbestos, is sustained by the cyclic formation of cytotoxic/genotoxic oxidant species that are catalysed by iron. High catalytic activity is observed when iron atoms are isolated in the crystal lattice (nuclearity=1), whereas the catalytic activity is expected to be reduced or null when iron forms clusters of higher nuclearity. This study presents a novel approach for systematically measuring iron nuclearity across a large range of iron-containing standards and mineral fibres of social and economic importance, and for quantitatively assessing the relation between nuclearity and toxicity. The multivariate curve resolution (MCR) empirical approach and density functional theory (DFT) calculations were applied to the analysis of UV-Vis spectra to obtain information on the nature of iron and nuclearity. This approach led to the determination of the nuclearity of selected mineral fibres which was subsequently used to calculate a toxicity-related index. High nuclearity-related toxicity was estimated for chrysotile samples, fibrous glaucophane, asbestos tremolite, and fibrous wollastonite. Intermediate values of toxicity, corresponding to a mean nuclearity of 2, were assigned to actinolite asbestos, amosite, and crocidolite. Finally, a low nuclearity-related toxicity parameter, corresponding to an iron-cluster with a lower catalytic power to produce oxidants, was assigned to asbestos anthophyllite.


Assuntos
Amianto , Ferro , Fibras Minerais/toxicidade , Fibras Minerais/análise , Amianto/toxicidade , Asbestos Serpentinas , Asbesto Crocidolita , Oxidantes
11.
Dalton Trans ; 53(8): 3490-3498, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38270176

RESUMO

Iron(II) can show a very rich coordination chemistry with concomitant modulation of its properties as promising functional materials. Metalation of the neutral tridentate nitrogen-donor mer-coordinating ligand 2,6-bis(2-(methyl)-2H-tetrazol-5-yl)pyridine (Me2btp) with Fe(ClO4)2·6H2O through accurate solvent polarity control enables the selective crystallization of [FeHS/LS(Me2btp)2](ClO4)2·MeCN·2.75H2O (2HS/LS·MeCN·2.75H2O) as red rods, where half of the iron(II) centres resides in the low spin (LS, S = 0) state and the other half is in the high spin (HS, S = 2) state. The red rods spontaneously convert into yellow crystals once removed from the mother liquor and exposed to air due to solvent rearrangement within the crystal packing; these new crystals can be assigned to [FeHS(Me2btp)2](ClO4)2·solvent (2HS·solvent) where all the iron(II) centres are now blocked in the HS state, as confirmed by magnetic measurements. The polarity of the crystallization solvent, together with the maintenance of the crystals within the mother liquor, are pivotal for the reactivity and interconversion of different species. Indeed, upon long standing in solution, 2HS/LS·MeCN·2.75H2O converts to another form of red crystals belonging to [FeLS(Me2btp)2][FeHS(Me2btp)(MeCN)2(H2O)](ClO4)4·MeCN (2LS·3HS·MeCN), as confirmed by single crystal X-ray diffraction data. In this co-crystal, the iron(II) in 2 resides in the LS state at all temperatures while the iron(II) in 3 is blocked in the HS state. Well-formed yellow crystals could be also isolated among the red crystals of 2HS/LS·MeCN·2.75H2O, and they could be identified as the unprecedented octacoordinated species [Fe(Me2btp)2(MeCN)(H2O)](ClO4)2·H2O (1·H2O) by single-crystal X-ray diffraction. These yellow crystals are stable in the air, but slowly convert into 2LS·3HS·MeCN if kept in the mother liquor for about one week. 1·H2O can be considered the trapped intermediate in the solid state during the conversion of [FeHS(Me2btp)2]2+ into [FeHS(Me2btp)(MeCN)2(H2O)]2+ in solution, where the two tridentate ligands in the starting species can unfold to accommodate coordinated MeCN and H2O molecules, as confirmed by theoretical calculations, and eventually one of the two Me2btp is completely replaced by the solvent.

12.
J Phys Chem A ; 116(9): 2147-53, 2012 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-22309150

RESUMO

The hydrogen-bond dynamics of lithium nitrate trihydrate has been studied by a combined approach based on ab initio molecular dynamics simulations and wavelet analysis. The simultaneous bifurcated interaction between one hydrogen atom of water molecules and two oxygen atoms of nitrate ions is the pivotal feature of the crystal structure: this bifurcated interaction has deep effects on the O-H stretching region of the vibrational spectrum. The structural, dynamic, spectroscopic, and electronic properties of the bifurcated hydrogen bond have been investigated computationally, elucidating at the molecular level the differences with weak and strong hydrogen bonds present in the crystal. These studies corroborate the very recent IR experiments performed on the lithium nitrate trihydrate crystal, offering new perspectives to interpreting the vibrational spectra. In fact, this approach allows obtaining two-dimensional plots, which summarize the essential features of both the hydrogen-bond network and IR spectra, resulting in a peculiar "signature" of the bifurcated interaction.

13.
J Chem Phys ; 137(24): 244501, 2012 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-23277939

RESUMO

Hydrogen bond interactions strongly affect vibrational properties and frequencies, the most common consequence being a redshift of the stretching vibration involved; there are, however, few exceptions to this general trend. In previous works, we have proved the effectiveness of ab initio simulations combined with wavelet analysis to investigate these effects and put them into relation to structural environment. In this work, we investigate the hydrogen bond effects on the structural and vibrational properties of 1,3-propanediol in acetonitrile by a combined experimental and computational approach. We explain the appearance of two spectral components in the O-H stretching band on the basis of intra- and intermolecular hydrogen bond interactions. We also elucidate the blueshift of the C≡N stretching band as due to a hydrogen bond interaction between the glycol and acetonitrile that modify the electron density distribution inside the CN group. This effect is well reproduced by ab initio molecular dynamics simulations and density functional calculations reported in this work.


Assuntos
Acetonitrilas/química , Propilenoglicóis/química , Teoria Quântica , Análise Espectral , Vibração , Ligação de Hidrogênio , Conformação Molecular , Simulação de Dinâmica Molecular
14.
Nanomaterials (Basel) ; 12(17)2022 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-36079945

RESUMO

The surface-enhanced Raman scattering (SERS) spectra of piperidine adsorbed on silver/chloride colloids were studied by a combined density functional theory (DFT)/time dependent DFT (TD-DFT) approach. The mechanism of chemical enhancement on the Raman signals is due to at least two contributions: the first comes from the changes in the molecular force constants and the dynamic polarizabilities of the normal modes, when the molecule is chemisorbed. DFT calculations satisfactorily reproduce the SERS spectra of piperidine adsorbed on silver, showing that the species formed on the silver particle is a complex formed by a deprotonated piperidine linked to a silver cation. A second contribution to the SERS chemical enhancement is due to a resonance Raman effect occurring when the wavelength of the Raman excitation falls within the electronic excitation band of the molecule/metal complex. Actually, the SERS spectra of piperidine show a significant dependence on the wavelength of the laser excitation, with a marked enhancement in the green-light region. TD-DFT calculations on the most-probable complex explain this behavior, because a strong excitation band of the complex is calculated in the green spectral region. This pinpoints that a resonance between the exciting radiation and the absorption band of this complex is responsible for this enhancement effect.

15.
Nanomaterials (Basel) ; 11(9)2021 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-34578725

RESUMO

Organometallic nanoparticles composed by metal cores with sizes under two nanometers covered with organic capping ligands exhibit intermediate properties between those of atoms and molecules on one side, and those of larger metal nanoparticles on the other. In fact, these particles do not show a peculiar metallic behavior, characterized by plasmon resonances, but instead they have nonvanishing band-gaps, more along molecular optical properties. As a consequence, they are suitable to be described and investigated by computational approaches such as those used in quantum chemistry, for instance those based on the time-dependent density functional theory (TD-DFT). Here, I present a short review of the research performed from 2014 onward at the University of Modena and Reggio Emilia (Italy) on the TD-DFT interpretation of the electronic spectra of different organic-protected gold and/or silver nanoclusters.

16.
Nanomaterials (Basel) ; 10(1)2020 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-31936852

RESUMO

Magneto-plasmonic nanoparticles constituted of gold and iron oxide were obtained in an aqueous environment by laser ablation of iron and gold targets in two successive steps. Gold nanoparticles are embedded in a mucilaginous matrix of iron oxide, which was identified as magnetite by both microscopic and spectroscopic analyses. The plasmonic properties of the obtained colloids, as well as their adsorption capability, were tested by surface-enhanced Raman scattering (SERS) spectroscopy using 2,2'-bipyridine as a probe molecule. DFT calculations allowed for obtaining information on the adsorption of the ligand molecules that strongly interact with positively charged surface active sites of the gold nanoparticles, thus providing efficient SERS enhancement. The presence of iron oxide gives the bimetallic colloid new possibilities of adsorption in addition to those inherent to gold nanoparticles, especially regarding organic pollutants and heavy metals, allowing to remove them from the aqueous environment by applying a magnetic field. Moreover, these nanoparticles, thanks to their low toxicity, are potentially useful not only in the field of sensors, but also for biomedical applications.

17.
J Chem Theory Comput ; 16(7): 4543-4553, 2020 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-32407118

RESUMO

We present a new formula and implementation for a descriptor enabling quantification of the electron-hole distance associated with a charge transfer of an optical transition, on the basis of the knowledge of the densities of the electronic ground and excited states. This index is able to define a charge-transfer length even for systems that would be otherwise difficult to treat, like symmetric molecules, while maintaining a very low computational cost and the possibility to be coupled to any method providing ground and excited state electron densities. After a benchmark of its performance on a series of push-pull molecules, the index has been applied to a set of large symmetric luminophores, the so-called "butterfly molecules", showing promising applications in optoelectronics, to highlight its potential use in the design of new compounds.

18.
ACS Mater Lett ; 2(4): 438-445, 2020 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-32296781

RESUMO

In theory, bimetallic UiO-66(Zr:Ce) and UiO-66(Zr:Hf) metal-organic frameworks (MOFs) are extremely versatile and attractive nanoporous materials as they combine the high catalytic activity of UiO-66(Ce) or UiO-66(Hf) with the outstanding stability of UiO-66(Zr). Using in situ high-pressure powder X-ray diffraction, however, we observe that this expected mechanical stability is not achieved when incorporating cerium or hafnium in UiO-66(Zr). This observation is akin to the earlier observed reduced thermal stability of UiO-66(Zr:Ce) compounds. To elucidate the atomic origin of this phenomenon, we chart the loss-of-crystallinity pressures of 22 monometallic and bimetallic UiO-66 materials and systematically isolate their intrinsic mechanical stability from their defect-induced weakening. This complementary experimental/computational approach reveals that the intrinsic mechanical stability of these bimetallic MOFs decreases nonlinearly upon cerium incorporation but remains unaffected by the zirconium: hafnium ratio. Additionally, all experimental samples suffer from defect-induced weakening, a synthesis-controlled effect that is observed to be independent of their intrinsic stability.

19.
ACS Omega ; 4(23): 20315-20323, 2019 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-31815234

RESUMO

Here, we have studied, with a combined experimental and computational approach, the effect of the crystal environment and aggregation on the electronic properties of Pigment Red 179, which affect both its color and optical energy gap. Spectra acquired in the near-infrared and visible range of energies suggest that this molecule is indeed a "cool" dye, which can be employed as a red pigment that provides effective color coverage to different substrates without contributing to their heating during light irradiation. Spectra acquired on different polymer mixtures at different pigment concentrations (i.e., 2.5-10 wt %) suggest that absorption features depend on chromophoric arrangements promoted by the strong intermolecular π-π interactions. Calculations, performed at the time-dependent density functional theory level, allowed to both attribute the nature of the electronic transitions causing the observed spectra involved and understand the effect of the environment. Indeed, the visible spectra of the pigment is dominated by two localized transitions, with negligible charge transfer for both a dye monomer and dimer either in vacuum or acetonitrile solution. Instead, models including the crystal environment of the pigment show the presence of a high-wavelength S1 ← S0 charge transfer transition between two adjacent molecules, in quantitative agreement with the experimental absorption energy of the crystal pigment.

20.
Nanomaterials (Basel) ; 9(9)2019 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-31466241

RESUMO

A Surface-Enhanced Raman Scattering (SERS) spectrum of 4-cyanopyridine (4CNPy) was recorded on silver plasmonic nanoparticles and analyzed by using Density Functional Theory (DFT) calculations. Two simple molecular models of the metal-4CNPy surface complex with a single silver cation or with a neutral dimer (Ag+-4CNPy, Ag2-4CNPy), linked through the two possible interacting sites of 4CNPy (aromatic nitrogen, N, and nitrile group, CN), were considered. The calculated vibrational wavenumbers and intensities of the adsorbate and the isolated species are compared with the experimental Raman and SERS results. The analysis of the DFT predictions and the experimental data indicates that 4CNPy adsorbs preferentially on neutral/charged active sites of the silver nanoparticles through the nitrogen atom of the aromatic ring with a perpendicular orientation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA