Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Annu Rev Cell Dev Biol ; 36: 237-264, 2020 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-32749865

RESUMO

Parkinson's disease (PD) is a leading cause of neurodegeneration that is defined by the selective loss of dopaminergic neurons and the accumulation of protein aggregates called Lewy bodies (LBs). The unequivocal identification of Mendelian inherited mutations in 13 genes in PD has provided transforming insights into the pathogenesis of this disease. The mechanistic analysis of several PD genes, including α-synuclein (α-syn), leucine-rich repeat kinase 2 (LRRK2), PTEN-induced kinase 1 (PINK1), and Parkin, has revealed central roles for protein aggregation, mitochondrial damage, and defects in endolysosomal trafficking in PD neurodegeneration. In this review, we outline recent advances in our understanding of these gene pathways with a focus on the emergent role of Rab (Ras analog in brain) GTPases and vesicular trafficking as a common mechanism that underpins how mutations in PD genes lead to neuronal loss. These advances have led to previously distinct genes such as vacuolar protein-sorting-associated protein 35 (VPS35) and LRRK2 being implicated in a common signaling pathway. A greater understanding of these common nodes of vesicular trafficking will be crucial for linking other PD genes and improving patient stratification in clinical trials underway against α-syn and LRRK2 targets.


Assuntos
Doença de Parkinson/metabolismo , Animais , Autofagia , Vesículas Citoplasmáticas/metabolismo , Humanos , Mitocôndrias/metabolismo , Doença de Parkinson/genética , Agregados Proteicos , Transporte Proteico
2.
Proc Natl Acad Sci U S A ; 121(7): e2312676121, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38324566

RESUMO

To facilitate analysis and sharing of mass spectrometry (MS)-based proteomics data, we created online tools called CURTAIN (https://curtain.proteo.info) and CURTAIN-PTM (https://curtainptm.proteo.info) with an accompanying series of video tutorials (https://www.youtube.com/@CURTAIN-me6hl). These are designed to enable non-MS experts to interactively peruse volcano plots and deconvolute primary experimental data so that replicates can be visualized in bar charts or violin plots and exported in publication-ready format. They also allow assessment of overall experimental quality by correlation matrix and profile plot analysis. After making a selection of protein "hits", the user can analyze known domain structure, AlphaFold predicted structure, reported interactors, relative expression as well as disease links. CURTAIN-PTM permits analysis of all identified PTM sites on protein(s) of interest with selected databases. CURTAIN-PTM also links with the Kinase Library to predict upstream kinases that may phosphorylate sites of interest. We provide examples of the utility of CURTAIN and CURTAIN-PTM in analyzing how targeted degradation of the PPM1H Rab phosphatase that counteracts the Parkinson's LRRK2 kinase impacts cellular protein levels and phosphorylation sites. We also reanalyzed a ubiquitylation dataset, characterizing the PINK1-Parkin pathway activation in primary neurons, revealing data of interest not highlighted previously. CURTAIN and CURTAIN-PTM are free to use and open source, enabling researchers to share and maximize the impact of their proteomics data. We advocate that MS data published in volcano plot format be reported containing a shareable CURTAIN weblink, thereby allowing readers to better analyze and exploit the data.


Assuntos
Espectrometria de Massas , Proteômica , Software , Internet , Fosforilação , Processamento de Proteína Pós-Traducional , Proteínas/análise , Proteômica/métodos
3.
Biochem J ; 477(9): 1651-1668, 2020 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-32227113

RESUMO

Loss of function mutations in the PTEN-induced kinase 1 (PINK1) kinase are causal for autosomal recessive Parkinson's disease (PD) whilst gain of function mutations in the LRRK2 kinase cause autosomal dominant PD. PINK1 indirectly regulates the phosphorylation of a subset of Rab GTPases at a conserved Serine111 (Ser111) residue within the SF3 motif. Using genetic code expansion technologies, we have produced stoichiometric Ser111-phosphorylated Rab8A revealing impaired interactions with its cognate guanine nucleotide exchange factor and GTPase activating protein. In a screen for Rab8A kinases we identify TAK1 and MST3 kinases that can efficiently phosphorylate the Switch II residue Threonine72 (Thr72) in a similar manner as LRRK2 in vitro. Strikingly, we demonstrate that Ser111 phosphorylation negatively regulates the ability of LRRK2 but not MST3 or TAK1 to phosphorylate Thr72 of recombinant nucleotide-bound Rab8A in vitro and demonstrate an interplay of PINK1- and LRRK2-mediated phosphorylation of Rab8A in transfected HEK293 cells. Finally, we present the crystal structure of Ser111-phosphorylated Rab8A and nuclear magnetic resonance structure of Ser111-phosphorylated Rab1B. The structures reveal that the phosphorylated SF3 motif does not induce any major changes, but may interfere with effector-Switch II interactions through intramolecular H-bond formation and/or charge effects with Arg79. Overall, we demonstrate antagonistic regulation between PINK1-dependent Ser111 phosphorylation and LRRK2-mediated Thr72 phosphorylation of Rab8A indicating a potential cross-talk between PINK1-regulated mitochondrial homeostasis and LRRK2 signalling that requires further investigation in vivo.


Assuntos
Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Fosforilação/fisiologia , Proteínas Quinases/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Células HEK293 , Humanos , Mitocôndrias/metabolismo , Transtornos Parkinsonianos/etiologia , Transtornos Parkinsonianos/metabolismo , Serina/metabolismo , Treonina/metabolismo
4.
Eur J Neurosci ; 49(4): 453-462, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30586214

RESUMO

Parkinson's is a heterogeneous, complex condition. Stratification of Parkinson's subtypes will be essential to identify those that will benefit most from a cell replacement therapy. Foetal mesencephalic grafts can alleviate motor symptoms in some Parkinson's patients. However, on-going synucleinopathy results in the grafts eventually developing Lewy bodies, and they begin to fail. We propose that Parkinson's patients with PARKIN mutations may benefit most from a cell replacement therapy because (a) they often lack synucleinopathy, and (b) their neurodegeneration is often confined to the nigrostriatal pathway. While patients with PARKIN mutations exhibit clinical signs of Parkinson's, post-mortem studies to date indicate the majority lack Lewy bodies suggesting the nigral dopaminergic neurons are lost in a cell autonomous manner independent of α-synuclein mechanisms. Furthermore, these patients are usually younger, slow progressing and typically do not suffer from complex non-nigral symptoms that are unlikely to be ameliorated by a cell replacement therapy. Transplantation of dopaminergic cells into the putamen of these patients will provide neurons with wild-type PARKIN expression to re-innervate the striatum. The focal nature of PARKIN-mediated neurodegeneration and lack of active synucleinopathy in most young-onset cases makes these patients ideal candidates for a dopaminergic cell replacement therapy. Strategies to improve the outcome of cell replacement therapies for sporadic Parkinson's include the use of adjunct therapeutics that target α-synuclein spreading and the use of genetically engineered grafts that are resistant to synucleinopathy.


Assuntos
Neurônios Dopaminérgicos/transplante , Doença de Parkinson/metabolismo , Doença de Parkinson/cirurgia , Putamen/cirurgia , Ubiquitina-Proteína Ligases/metabolismo , Humanos , Doença de Parkinson/genética , Ubiquitina-Proteína Ligases/genética
5.
Chembiochem ; 19(5): 425-429, 2018 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-29226533

RESUMO

Mutations in PINK1, which impair its catalytic kinase activity, are causal for autosomal recessive early-onset Parkinson's disease (PD). Various studies have indicated that the activation of PINK1 could be a useful strategy in treating neurodegenerative diseases, such as PD. Herein, it is shown that the anthelmintic drug niclosamide and its analogues are capable of activating PINK1 in cells through the reversible impairment of the mitochondrial membrane potential. With these compounds, for the first time, it is demonstrated that the PINK1 pathway is active and detectable in primary neurons. These findings suggest that niclosamide and its analogues are robust compounds for the study of the PINK1 pathway and may hold promise as a therapeutic strategy in PD and related disorders.


Assuntos
Anti-Helmínticos/química , Anti-Helmínticos/farmacologia , Ativadores de Enzimas/química , Ativadores de Enzimas/farmacologia , Niclosamida/análogos & derivados , Niclosamida/farmacologia , Proteínas Quinases/metabolismo , Descoberta de Drogas , Células HeLa , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Transtornos Parkinsonianos/tratamento farmacológico , Transtornos Parkinsonianos/enzimologia
6.
Nat Chem Biol ; 12(5): 324-31, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26928937

RESUMO

E3 ligases represent an important class of enzymes, yet there are currently no chemical probes for profiling their activity. We develop a new class of activity-based probe by re-engineering a ubiquitin-charged E2 conjugating enzyme and demonstrate the utility of these probes by profiling the transthiolation activity of the RING-in-between-RING (RBR) E3 ligase parkin in vitro and in cellular extracts. Our study provides valuable insight into the roles, and cellular hierarchy, of distinct phosphorylation events in parkin activation. We also profile parkin mutations associated with patients with Parkinson's disease and demonstrate that they mediate their effect largely by altering transthiolation activity. Furthermore, our probes enable direct and quantitative measurement of endogenous parkin activity, revealing that endogenous parkin is activated in neuronal cell lines (≥75%) in response to mitochondrial depolarization. This new technology also holds promise as a novel biomarker of PINK1-parkin signaling, as demonstrated by its compatibility with samples derived from individuals with Parkinson's disease.


Assuntos
Regulação Enzimológica da Expressão Gênica/fisiologia , Ubiquitina-Proteína Ligases/metabolismo , Fibroblastos/metabolismo , Células HeLa , Humanos , Mutação , Ubiquitina-Proteína Ligases/genética
7.
Biochem J ; 474(9): 1439-1451, 2017 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-28408429

RESUMO

Biochemical alterations found in the brains of Parkinson's disease (PD) patients indicate that cellular stress is a major driver of dopaminergic neuronal loss. Oxidative stress, mitochondrial dysfunction, and ER stress lead to impairment of the homeostatic regulation of protein quality control pathways with a consequent increase in protein misfolding and aggregation and failure of the protein degradation machinery. Ubiquitin signalling plays a central role in protein quality control; however, prior to genetic advances, the detailed mechanisms of how impairment in the ubiquitin system was linked to PD remained mysterious. The discovery of mutations in the α-synuclein gene, which encodes the main protein misfolded in PD aggregates, together with mutations in genes encoding ubiquitin regulatory molecules, including PTEN-induced kinase 1 (PINK1), Parkin, and FBX07, has provided an opportunity to dissect out the molecular basis of ubiquitin signalling disruption in PD, and this knowledge will be critical for developing novel therapeutic strategies in PD that target the ubiquitin system.


Assuntos
Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Ubiquitina/genética , Ubiquitina/metabolismo , Animais , Humanos , Estresse Oxidativo/fisiologia , Doença de Parkinson/diagnóstico , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo
8.
Nat Chem Biol ; 11(7): 496-503, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26030730

RESUMO

Serine phosphorylation is a key post-translational modification that regulates diverse biological processes. Powerful analytical methods have identified thousands of phosphorylation sites, but many of their functions remain to be deciphered. A key to understanding the function of protein phosphorylation is access to phosphorylated proteins, but this is often challenging or impossible. Here we evolve an orthogonal aminoacyl-tRNA synthetase/tRNACUA pair that directs the efficient incorporation of phosphoserine (pSer (1)) into recombinant proteins in Escherichia coli. Moreover, combining the orthogonal pair with a metabolically engineered E. coli enables the site-specific incorporation of a nonhydrolyzable analog of pSer. Our approach enables quantitative decoding of the amber stop codon as pSer, and we purify, with yields of several milligrams per liter of culture, proteins bearing biologically relevant phosphorylations that were previously challenging or impossible to access--including phosphorylated ubiquitin and the kinase Nek7, which is synthetically activated by a genetically encoded phosphorylation in its activation loop.


Assuntos
Aminoacil-tRNA Sintetases/genética , Proteínas de Escherichia coli/genética , Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Fosfosserina/metabolismo , Processamento de Proteína Pós-Traducional , Aminoacil-tRNA Sintetases/química , Aminoacil-tRNA Sintetases/metabolismo , Sequência de Bases , Códon de Terminação/química , Códon de Terminação/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Código Genético , Modelos Moleculares , Dados de Sequência Molecular , Quinases Relacionadas a NIMA , Conformação de Ácido Nucleico , Fosforilação , Fosfosserina/química , Engenharia de Proteínas , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Ubiquitina/química , Ubiquitina/genética , Ubiquitina/metabolismo
9.
EMBO Rep ; 16(8): 939-54, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26116755

RESUMO

Mutations in the mitochondrial protein kinase PINK1 are associated with autosomal recessive Parkinson disease (PD). We and other groups have reported that PINK1 activates Parkin E3 ligase activity both directly via phosphorylation of Parkin serine 65 (Ser(65))--which lies within its ubiquitin-like domain (Ubl)--and indirectly through phosphorylation of ubiquitin at Ser(65). How Ser(65)-phosphorylated ubiquitin (ubiquitin(Phospho-Ser65)) contributes to Parkin activation is currently unknown. Here, we demonstrate that ubiquitin(Phospho-Ser65) binding to Parkin dramatically increases the rate and stoichiometry of Parkin phosphorylation at Ser(65) by PINK1 in vitro. Analysis of the Parkin structure, corroborated by site-directed mutagenesis, shows that the conserved His302 and Lys151 residues play a critical role in binding of ubiquitin(Phospho-Ser65), thereby promoting Parkin Ser(65) phosphorylation and activation of its E3 ligase activity in vitro. Mutation of His302 markedly inhibits Parkin Ser(65) phosphorylation at the mitochondria, which is associated with a marked reduction in its E3 ligase activity following mitochondrial depolarisation. We show that the binding of ubiquitin(Phospho-Ser65) to Parkin disrupts the interaction between the Ubl domain and C-terminal region, thereby increasing the accessibility of Parkin Ser(65). Finally, purified Parkin maximally phosphorylated at Ser(65) in vitro cannot be further activated by the addition of ubiquitin(Phospho-Ser65). Our results thus suggest that a major role of ubiquitin(Phospho-Ser65) is to promote PINK1-mediated phosphorylation of Parkin at Ser(65), leading to maximal activation of Parkin E3 ligase activity. His302 and Lys151 are likely to line a phospho-Ser(65)-binding pocket on the surface of Parkin that is critical for the ubiquitin(Phospho-Ser65) interaction. This study provides new mechanistic insights into Parkin activation by ubiquitin(Phospho-Ser65), which could aid in the development of Parkin activators that mimic the effect of ubiquitin(Phospho-Ser65).


Assuntos
Proteínas Quinases/metabolismo , Serina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina/metabolismo , Células HEK293 , Humanos , Espectrometria de Massas , Mutagênese Sítio-Dirigida , Mutação , Fosforilação , Ligação Proteica , Proteínas Quinases/genética , Estrutura Terciária de Proteína , Serina/genética , Ubiquitina/genética , Ubiquitina-Proteína Ligases/genética , Ubiquitinação
10.
Chembiochem ; 16(11): 1574-9, 2015 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-26010437

RESUMO

Ubiquitin phosphorylation is emerging as an important regulatory layer in the ubiquitin system. This is exemplified by the phosphorylation of ubiquitin on Ser65 by the Parkinson's disease-associated kinase PINK1, which mediates the activation of the E3 ligase Parkin. Additional phosphorylation sites on ubiquitin might also have important cellular roles. Here we report a versatile strategy for preparing phosphorylated ubiquitin. We biochemically and structurally characterise semisynthetic phospho-Ser65-ubiquitin. Unexpectedly, we observed disulfide bond formation between ubiquitin molecules, and hence a novel crystal form. The method outlined provides a direct approach to study the combinatorial effects of phosphorylation on ubiquitin function. Our analysis also suggests that disulfide engineering of ubiquitin could be a useful strategy for obtaining alternative crystal forms of ubiquitin species thereby facilitating structural validation.


Assuntos
Serina/metabolismo , Ubiquitina/química , Ubiquitina/metabolismo , Dissulfetos/química , Ativação Enzimática , Modelos Moleculares , Fosfoproteínas/química , Fosfoproteínas/metabolismo , Fosforilação , Conformação Proteica , Ubiquitina-Proteína Ligases/metabolismo
11.
Biochem J ; 460(1): 127-39, 2014 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-24660806

RESUMO

We have previously reported that the Parkinson's disease-associated kinase PINK1 (PTEN-induced putative kinase 1) is activated by mitochondrial depolarization and stimulates the Parkin E3 ligase by phosphorylating Ser65 within its Ubl (ubiquitin-like) domain. Using phosphoproteomic analysis, we identified a novel ubiquitin phosphopeptide phosphorylated at Ser65 that was enriched 14-fold in HEK (human embryonic kidney)-293 cells overexpressing wild-type PINK1 stimulated with the mitochondrial uncoupling agent CCCP (carbonyl cyanide m-chlorophenylhydrazone), to activate PINK1, compared with cells expressing kinase-inactive PINK1. Ser65 in ubiquitin lies in a similar motif to Ser65 in the Ubl domain of Parkin. Remarkably, PINK1 directly phosphorylates Ser65 of ubiquitin in vitro. We undertook a series of experiments that provide striking evidence that Ser65-phosphorylated ubiquitin (ubiquitinPhospho-Ser65) functions as a critical activator of Parkin. First, we demonstrate that a fragment of Parkin lacking the Ubl domain encompassing Ser65 (ΔUbl-Parkin) is robustly activated by ubiquitinPhospho-Ser65, but not by non-phosphorylated ubiquitin. Secondly, we find that the isolated Parkin Ubl domain phosphorylated at Ser65 (UblPhospho-Ser65) can also activate ΔUbl-Parkin similarly to ubiquitinPhospho-Ser65. Thirdly, we establish that ubiquitinPhospho-Ser65, but not non-phosphorylated ubiquitin or UblPhospho-Ser65, activates full-length wild-type Parkin as well as the non-phosphorylatable S65A Parkin mutant. Fourthly, we provide evidence that optimal activation of full-length Parkin E3 ligase is dependent on PINK1-mediated phosphorylation of both Parkin at Ser65 and ubiquitin at Ser65, since only mutation of both proteins at Ser65 completely abolishes Parkin activation. In conclusion, the findings of the present study reveal that PINK1 controls Parkin E3 ligase activity not only by phosphorylating Parkin at Ser65, but also by phosphorylating ubiquitin at Ser65. We propose that phosphorylation of Parkin at Ser65 serves to prime the E3 ligase enzyme for activation by ubiquitinPhospho-Ser65, suggesting that small molecules that mimic ubiquitinPhospho-Ser65 could hold promise as novel therapies for Parkinson's disease.


Assuntos
Proteínas Quinases/genética , Serina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina/metabolismo , Sequência de Aminoácidos , Células HEK293 , Humanos , Dados de Sequência Molecular , Fosforilação/genética , Proteínas Quinases/fisiologia , Serina/genética , Ubiquitina/genética , Ubiquitina-Proteína Ligases/genética
12.
Ann Neurol ; 74(6): 837-47, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24027110

RESUMO

OBJECTIVE: Loss of function mutations in PINK1 typically lead to early onset Parkinson disease (PD). Zebrafish (Danio rerio) are emerging as a powerful new vertebrate model to study neurodegenerative diseases. We used a pink1 mutant (pink(-/-) ) zebrafish line with a premature stop mutation (Y431*) in the PINK1 kinase domain to identify molecular mechanisms leading to mitochondrial dysfunction and loss of dopaminergic neurons in PINK1 deficiency. METHODS: The effect of PINK1 deficiency on the number of dopaminergic neurons, mitochondrial function, and morphology was assessed in both zebrafish embryos and adults. Genome-wide gene expression studies were undertaken to identify novel pathogenic mechanisms. Functional experiments were carried out to further investigate the effect of PINK1 deficiency on early neurodevelopmental mechanisms and microglial activation. RESULTS: PINK1 deficiency results in loss of dopaminergic neurons as well as early impairment of mitochondrial function and morphology in Danio rerio. Expression of TigarB, the zebrafish orthologue of the human, TP53-induced glycolysis and apoptosis regulator TIGAR, was markedly increased in pink(-/-) larvae. Antisense-mediated inactivation of TigarB gave rise to complete normalization of mitochondrial function, with resulting rescue of dopaminergic neurons in pink(-/-) larvae. There was also marked microglial activation in pink(-/-) larvae, but depletion of microglia failed to rescue the dopaminergic neuron loss, arguing against microglial activation being a key factor in the pathogenesis. INTERPRETATION: Pink1(-/-) zebrafish are the first vertebrate model of PINK1 deficiency with loss of dopaminergic neurons. Our study also identifies TIGAR as a promising novel target for disease-modifying therapy in PINK1-related PD.


Assuntos
Proteínas Reguladoras de Apoptose/fisiologia , Modelos Animais de Doenças , Neurônios Dopaminérgicos/metabolismo , Mitocôndrias/metabolismo , Doenças Mitocondriais/metabolismo , Proteínas Serina-Treonina Quinases/fisiologia , Proteínas de Peixe-Zebra/fisiologia , Animais , Animais Geneticamente Modificados , Proteínas Reguladoras de Apoptose/genética , Neurônios Dopaminérgicos/patologia , Larva/genética , Larva/metabolismo , Microglia/metabolismo , Doenças Mitocondriais/genética , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Proteínas Serina-Treonina Quinases/deficiência , Proteínas Serina-Treonina Quinases/genética , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética
13.
Acta Neuropathol ; 127(2): 283-95, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24292008

RESUMO

Frontotemporal lobar degeneration (FTLD) consists of a group of neurodegenerative diseases characterized by behavioural and executive impairment, language disorders and motor dysfunction. About 20-30% of cases are inherited in a dominant manner. Mutations in the microtubule-associated protein tau gene (MAPT) cause frontotemporal dementia and parkinsonism linked to chromosome 17 (FTDP-17T). Here we report a novel MAPT mutation (K298E) in exon 10 in a patient with FTDP-17T. Neuropathological studies of post-mortem brain showed widespread neuronal loss and gliosis and abundant deposition of hyperphosphorylated tau in neurons and glia. Molecular studies demonstrated that the K298E mutation affects both protein function and alternative mRNA splicing. Fibroblasts from a skin biopsy of the proband taken at post-mortem were directly induced into neurons (iNs) and expressed both 3-repeat and 4-repeat tau isoforms. As well as contributing new knowledge on MAPT mutations in FTDP-17T, this is the first example of the successful generation of iNs from skin cells retrieved post-mortem.


Assuntos
Encéfalo/patologia , Éxons/genética , Mutação/genética , Neurônios/metabolismo , Tauopatias/genética , Proteínas tau/metabolismo , Idoso , Autopsia , Biópsia , Cromossomos Humanos Par 17/genética , Feminino , Fibroblastos/metabolismo , Fibroblastos/patologia , Degeneração Lobar Frontotemporal/genética , Degeneração Lobar Frontotemporal/metabolismo , Degeneração Lobar Frontotemporal/mortalidade , Humanos , Neurônios/patologia , Proteínas tau/genética
14.
Sci Adv ; 10(23): eadn7191, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38848361

RESUMO

Loss-of-function mutations in PTEN-induced kinase 1 (PINK1) are a frequent cause of early-onset Parkinson's disease (PD). Stabilization of PINK1 at the translocase of outer membrane (TOM) complex of damaged mitochondria is critical for its activation. The mechanism of how PINK1 is activated in the TOM complex is unclear. Here, we report that co-expression of human PINK1 and all seven TOM subunits in Saccharomyces cerevisiae is sufficient for PINK1 activation. We use this reconstitution system to systematically assess the role of each TOM subunit toward PINK1 activation. We unambiguously demonstrate that the TOM20 and TOM70 receptor subunits are required for optimal PINK1 activation and map their sites of interaction with PINK1 using AlphaFold structural modeling and mutagenesis. We also demonstrate an essential role of the pore-containing subunit TOM40 and its structurally associated subunits TOM7 and TOM22 for PINK1 activation. These findings will aid in the development of small-molecule activators of PINK1 as a therapeutic strategy for PD.


Assuntos
Proteínas de Transporte da Membrana Mitocondrial , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Proteínas Quinases , Saccharomyces cerevisiae , Proteínas Quinases/metabolismo , Proteínas Quinases/genética , Humanos , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Mitocôndrias/metabolismo , Ligação Proteica , Ativação Enzimática , Modelos Moleculares , Subunidades Proteicas/metabolismo , Subunidades Proteicas/genética
15.
Sci Adv ; 10(13): eadh0123, 2024 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-38536929

RESUMO

E2-conjugating enzymes (E2s) play a central role in the enzymatic cascade that leads to the attachment of ubiquitin to a substrate. This process, termed ubiquitylation, is required to maintain cellular homeostasis and affects almost all cellular process. By interacting with multiple E3 ligases, E2s dictate the ubiquitylation landscape within the cell. Since its discovery, ubiquitylation has been regarded as a posttranslational modification that specifically targets lysine side chains (canonical ubiquitylation). We used Matrix-Assisted Laser Desorption/Ionization-Time Of Flight Mass Spectrometry to identify and characterize a family of E2s that are instead able to conjugate ubiquitin to serine and/or threonine. We used structural modeling and prediction tools to identify the key activity determinants that these E2s use to interact with ubiquitin as well as their substrates. Our results unveil the missing E2s necessary for noncanonical ubiquitylation, underscoring the adaptability and versatility of ubiquitin modifications.


Assuntos
Enzimas de Conjugação de Ubiquitina , Ubiquitina-Proteína Ligases , Enzimas de Conjugação de Ubiquitina/química , Enzimas de Conjugação de Ubiquitina/genética , Enzimas de Conjugação de Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação , Ubiquitina/metabolismo , Processamento de Proteína Pós-Traducional
16.
Cell Rep Methods ; 4(2): 100712, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38382522

RESUMO

Parkinson's disease (PD) is a progressive neurological disorder that manifests clinically as alterations in movement as well as multiple non-motor symptoms including but not limited to cognitive and autonomic abnormalities. Loss-of-function mutations in the gene encoding the ubiquitin E3 ligase Parkin are causal for familial and juvenile PD. Among several therapeutic approaches being explored to treat or improve the prognosis of patients with PD, the use of small molecules able to reinstate or boost Parkin activity represents a potential pharmacological treatment strategy. A major barrier is the lack of high-throughput platforms for the robust and accurate quantification of Parkin activity in vitro. Here, we present two different and complementary Matrix-Assisted Laser Desorption/Ionization Time-Of-Flight Mass Spectrometry (MALDI-TOF/MS)-based approaches for the quantification of Parkin E3 ligase activity in vitro. Both approaches are scalable for high-throughput primary screening to facilitate the identification of Parkin modulators.


Assuntos
Doença de Parkinson , Ubiquitina-Proteína Ligases , Humanos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Ubiquitina-Proteína Ligases/genética , Ubiquitinação , Ubiquitina/genética , Mutação , Doença de Parkinson/diagnóstico
17.
Autophagy ; : 1-16, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38802071

RESUMO

The selective removal of dysfunctional mitochondria, a process termed mitophagy, is critical for cellular health and impairments have been linked to aging, Parkinson disease, and other neurodegenerative conditions. A central mitophagy pathway is orchestrated by the ubiquitin (Ub) kinase PINK1 together with the E3 Ub ligase PRKN/Parkin. The decoration of damaged mitochondrial domains with phosphorylated Ub (p-S65-Ub) mediates their elimination though the autophagy system. As such p-S65-Ub has emerged as a highly specific and quantitative marker of mitochondrial damage with significant disease relevance. Existing p-S65-Ub antibodies have been successfully employed as research tools in a range of applications including western blot, immunocytochemistry, immunohistochemistry, and enzyme-linked immunosorbent assay. However, physiological levels of p-S65-Ub in the absence of exogenous stress are very low, therefore difficult to detect and require reliable and ultrasensitive methods. Here we generated and characterized a collection of novel recombinant, rabbit monoclonal p-S65-Ub antibodies with high specificity and affinity in certain applications that allow the field to better understand the molecular mechanisms and disease relevance of PINK1-PRKN signaling. These antibodies may also serve as novel diagnostic or prognostic tools to monitor mitochondrial damage in various clinical and pathological specimens.Abbreviations: AD: Alzheimer disease; CCCP: carbonyl cyanide 3-chlorophenylhydrazone; ELISA: enzyme-linked immunosorbent assay; HEK293E cell: human embryonic kidney E cell; ICC: immunocytochemistry; IHC: immunohistochemistry: KO: knockout; LoB: limit of blank; LoD: limit of detection; LoQ: limit of quantification; MEF: mouse embryonic fibroblast; MSD: Meso Scale Discovery; n.s.: non-significant; nonTg: non-transgenic; PBMC: peripheral blood mononuclear cell; PD: Parkinson disease; p-S65-PRKN: phosphorylated PRKN at serine 65; p-S65-Ub: phosphorylated Ub at serine 65; Ub: ubiquitin; WT: wild-type.

18.
bioRxiv ; 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38293125

RESUMO

The selective removal of dysfunctional mitochondria, a process termed mitophagy, is critical for cellular health and impairments have been linked to aging, Parkinson disease, and other neurodegenerative conditions. A central mitophagy pathway is orchestrated by the ubiquitin (Ub) kinase PINK1 together with the E3 Ub ligase PRKN/Parkin. The decoration of damaged mitochondrial domains with phosphorylated Ub (p-S65-Ub) mediates their elimination though the autophagy system. As such p-S65-Ub has emerged as a highly specific and quantitative marker of mitochondrial damage with significant disease relevance. Existing p-S65-Ub antibodies have been successfully employed as research tools in a range of applications including western blot, immunocytochemistry, immunohistochemistry, and ELISA. However, physiological levels of p-S65-Ub in the absence of exogenous stress are very low, therefore difficult to detect and require reliable and ultrasensitive methods. Here we generated and characterized a collection of novel recombinant, rabbit monoclonal p-S65-Ub antibodies with high specificity and affinity in certain applications that allow the field to better understand the molecular mechanisms and disease relevance of PINK1-PRKN signaling. These antibodies may also serve as novel diagnostic or prognostic tools to monitor mitochondrial damage in various clinical and pathological specimens.

19.
Data Brief ; 49: 109336, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37456110

RESUMO

The functional diversity of neurons is specified through their proteome resulting in elaborate and tightly regulated protein interaction networks and signalling that regulates neuronal processes. Dysregulation of these dynamic networks in development or in adulthood lead to neurodevelopmental or neurological disorders respectively. Over the past few decades, mass spectrometry has become a powerful tool for quantifying and resolving any proteome, including complex tissues such as the brain proteome, with technological advances leading to higher levels of resolution and throughput than traditional biochemical techniques. In this article, we provide a proteomic reference dataset that has been generated to identify proteins and quantify their level of expression in primary mouse cortical neurons. It represents a summary analysis of previously published data in (Antico et al., 2021). Mouse cortical neurons were isolated from E16.5 C57Bl/6J mice and cultured for 21 days in vitro (DIV). We employed the mitochondrial uncouplers AntimycinA/Oligomycin (AO) to induce mitochondrial depolarisation that is a well-established paradigm to assess mitophagic signalling. Total lysates from mouse primary cortical neurons were subjected to label-free quantitative proteomic analysis using both data dependent acquisition (DDA) and data independent acquisition (DIA) modes. DDA proteomic analysis identified a total dataset of 9367 proteins in mouse cortical neurons and absolute abundance of proteins was calculated as copy numbers per cell. DDA dataset was also processed to generate a reference spectral library to fit in and quantify MS spectra generated in DIA mode. Quantitative DIA analysis identified more than 6000 protein groups and statistical comparison of the two analysed groups (untreated and AO-treated) revealed that the neuronal proteome was largely unchanged post mitochondrial depolarisation for 5 hours. To our knowledge, these files represent the most comprehensive DDA and DIA reference datasets of fully functional maturated mouse primary cortical neurons and serve as a valuable resource for further investigating the role of specific proteins involved in neurobiology and neurological disorders such as Alzheimer's disease (AD), Parkinson's disease (PD) and Autism Spectrum Disorders (ASD).

20.
J Mol Biol ; 435(12): 168144, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37182812

RESUMO

The elucidation of the function of the PINK1 protein kinase and Parkin ubiquitin E3 ligase in the elimination of damaged mitochondria by autophagy (mitophagy) has provided unprecedented understanding of the mechanistic pathways underlying Parkinson's disease (PD). We provide a comprehensive overview of the general importance of autophagy in Parkinson's disease and related disorders of the central nervous system. This reveals a critical link between autophagy and neurodegenerative and neurodevelopmental disorders and suggests that strategies to modulate mitophagy may have greater relevance in the CNS beyond PD.


Assuntos
Autofagia , Mitofagia , Doença de Parkinson , Humanos , Autofagia/genética , Sistema Nervoso Central , Mitofagia/genética , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA