Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Chemphyschem ; 24(8): e202200832, 2023 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-36594411

RESUMO

Copper(I) thiocyanate (CuSCN) is one of the most robust hole-transport materials for perovskite solar cells (PSCs). However, the power conversion efficiency of CuSCN-based PSCs is low due to difficulty in crystallization of CuSCN. In this study, we focused on humidity conditions during the aging process of CuSCN-based PSCs to improve their performance. PSCs aged in humid air, i. e., at a relative humidity of 70 %, exhibited better performance (efficiency; 10.6 %) than those aged in lower humidity (5.9 %) due to improved crystallinity of CuSCN layers. The results of the study provide insights into how to improve fabrication process of CuSCN-based PSCs for higher stability and efficiency.

2.
Nano Lett ; 18(6): 3600-3607, 2018 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-29701473

RESUMO

Frequently observed high Voc loss in tin-lead mixed perovskite solar cells is considered to be one of the serious bottle-necks in spite of the high attainable Jsc due to wide wavelength photon harvesting. An amicable solution to minimize the Voc loss up to 0.50 V has been demonstrated by introducing an n-type interface with spike structure between the absorber and electron transport layer inspired by highly efficient Cu(In,Ga)Se2 solar cells. Introduction of a conduction band offset of ∼0.15 eV with a thin phenyl-C61-butyric acid methyl ester layer (∼25 nm) on the top of perovskite absorber resulted into improved Voc of 0.75 V leading to best power conversion efficiency of 17.6%. This enhancement is attributed to the facile charge flow at the interface owing to the reduction of interfacial traps and carrier recombination with spike structure as evidenced by time-resolved photoluminescence, nanosecond transient absorption, and electrochemical impedance spectroscopy measurements.

3.
Langmuir ; 32(4): 1178-83, 2016 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-26672394

RESUMO

Recombination reactions in dye-sensitized solar cells (DSSCs) may substantially decrease the open-circuit voltage (Voc) with cobalt complex redox electrolyte. Managing steric hindrance in the dye structure is necessary to inhibit recombination reactions and thereby increase the Voc and achieve high power-conversion efficiency (PCE). New dyes with large-sized donors based on triphenylamine and modified with 4-(hexyloxy)phenyl groups were developed to identify an effective inhibitor for the recombination reaction in DSSCs with a cobalt complex redox electrolyte. The 4-(hexyloxy)phenyl tetra-adducts dye MK-123 effectively inhibited the recombination reaction, and the DSSC fabricated using this dye exhibited the highest Voc (greater than 900 mV) among the cells with the investigated dyes. However, the short-circuit current (Jsc) of the MK-123 cell was lower than that of the cell with the simple triphenylamine donor dye, MK-89. In contrast, the cell with bis-adducts dye MK-136 also exhibited an increase in its Voc without a decrease in its Jsc. Among the investigated dyes, MK-136 exhibited the highest PCE of 8.9%. The effects of the steric hindrance of the 4-(hexyloxy)phenyl substituent are discussed.

4.
Nano Lett ; 15(8): 5630-4, 2015 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-26236916

RESUMO

We analyzed the crystallization process of the CH3NH3PbI3 perovskite by observing real-time X-ray diffraction immediately after combining a PbI2 thin film with a CH3NH3I solution. A detailed analysis of the transformation kinetics demonstrated the fractal diffusion of the CH3NH3I solution into the PbI2 film. Moreover, the perovskite crystal was found to be initially oriented based on the PbI2 crystal orientation but to gradually transition to a random orientation. The fluctuating characteristics of the crystallization process of perovskites, such as fractal penetration and orientational transformation, should be controlled to allow the fabrication of high-quality perovskite crystals. The characteristic reaction dynamics observed in this study should assist in establishing reproducible fabrication processes for perovskite solar cells.


Assuntos
Compostos de Cálcio/química , Chumbo/química , Compostos Organometálicos/química , Óxidos/química , Titânio/química , Cristalização , Difusão , Fontes de Energia Elétrica , Energia Solar , Difração de Raios X
5.
Chemphyschem ; 16(8): 1657-62, 2015 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-25832779

RESUMO

In the present work, femtosecond transient absorption spectroscopy (fs-TAS) has been employed to investigate the electron injection efficiency (EIE) both from the singlet and triplet excited states of a well-known ruthenium dye (N719) to the conduction band (CB) of nanostructured TiO(2) in presence of three different organic solvents [γ-butylactone (GBL), 3-methoxypropionitrile (MPN), and dimethylformamide (DMF)] with different donor numbers (DNs) and dipole moments (DMs). The DM and DN of a solvent modulates the CB edge energy of TiO(2), and this effect reflects well in the fs-TAS results, which shows an EIE trend following the order GBL≥MPN≫DMF, that is, highest in GBL and lowest in DMF solvent environments. Fs-TAS results indicate a lower contribution of electron injection from both the singlet and triplet states in DMF, for which the dominant adsorption of DMF molecules on the TiO(2) surface seems to play an important role in the mechanism.


Assuntos
Elétrons , Compostos Organometálicos/química , Tiocianatos/química , Titânio/química , Estrutura Molecular , Compostos Orgânicos , Rutênio/química , Solventes/química , Espectroscopia por Absorção de Raios X
6.
Langmuir ; 30(8): 2274-9, 2014 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-24533669

RESUMO

The effect of the donor in an organic dye on the electron lifetime of dye-sensitized solar cells (DSSCs) employing a cobalt redox electrolyte was investigated. We synthesized organic dyes with donor moieties of carbazole, coumarin, triphenylamine, and N-phenyl-carbazole and measured the current-voltage characteristics and electron lifetimes of the DSSCs with these dyes. The cell with the triphenylamine donor dye produced the highest open circuit voltage and longest electron lifetime. On the other hand, the lowest open circuit voltage and shortest electron lifetime was obtained with coumarin donor dye, suggesting that the coumarin attracted the cobalt redox couples to the surface of the TiO2 layer, thus increasing the concentration of cobalt complex. On the other hand, the longest electron lifetime with triphenylamine was attributed to the blocking effect by steric hindrance of the nonplanar structure of the donor.

7.
Chemistry ; 19(3): 1028-34, 2013 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-23197470

RESUMO

A series of panchromatic ruthenium sensitizers (MJ sensitizers) with attached thiophene and phenyl units bearing alkyl chains was synthesized. A new synthetic route was used to examine all possible positions for the alkyl chains. The absorption spectra showed the sum of a ruthenium complex and peripheral organic chromophore units. The hypochromic effect and blueshift of the metal-to-ligand charge-transfer band observed in the modified ruthenium sensitizers were suppressed by changing the positions of the alkyl chains on the attached thiophene ring. Changing only one alkyl chain also influenced the performance of dye-sensitized solar cells. Ruthenium sensitizer MJ-10 with bulky substituent harvests visible and near-infrared light, and solar cells sensitized by MJ-10 exhibit an efficiency of 9.1% under 1 sun irradiation.


Assuntos
Corantes/química , Compostos Organometálicos/química , Rutênio/química , Titânio/química , Corantes/síntese química , Eletrólitos/química , Estrutura Molecular , Compostos Organometálicos/síntese química
8.
ACS Appl Mater Interfaces ; 15(38): 44859-44866, 2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37688539

RESUMO

Room-temperature ionic liquids (RTILs) have attracted significant attention owing to their unique nature and a variety of potential applications. The archetypal RTIL comprising an aliphatic primary ammonium was discovered over a century ago, but this cation is seldom used in modern RTILs because other bulky cations (e.g., quaternary ammonium-, pyridine-, and imidazole-based cations) are prominent in current major applications, such as electrolytes and solvents, which require low and/or reversible reactivities. However, although the design of materials should change according to the intended application, RTIL designs remain conventional even when applied in unexplored fields, limiting their functions. Herein, RTIL consisting of an archetypal aliphatic primary ammonium (i.e., n-octylammonium: OA) cation and a modern bis(trifluoromethylsulfonyl)imide (TFSI) anion is proposed and demonstrated as a highly functional additive for a 2,2',7,7'-tetrakis(N,N-di-4-methoxyphenylamino)-9,9'-spirobifluorene (Spiro-OMeTAD), which is the most common hole transport material (HTM), in perovskite solar cells (PSCs). The OA-TFSI additive exhibits prominent functions via permanent reactions of the component ions with the PSC components, thus providing several advantages. The OA cations spontaneously and densely passivate the perovskite layer during the HTM deposition process, leading to both suppression of carrier recombination at the HTM/perovskite interface and hydrophobic perovskite surfaces. Meanwhile, the TFSI anions effectively improve the HTM function most likely via efficient stabilization of the Spiro-OMeTAD radical, enhancing hole collection properties in the PSCs. Consequently, PSC performances involving long-term stability were significantly improved using the OA-TFSI additive. Based on the present results, this study advocates that reconsidering the RTIL design, even when it differs from the current major designs yet is suitable for a target application, can provide functions superior to conventional ones. The insights obtained in this work will spur further study of RTIL designs and aid the development of the broad materials science field including PSCs.

9.
Artigo em Inglês | MEDLINE | ID: mdl-35849506

RESUMO

The perovskite-Si tandem is an attractive avenue to attain greater power conversion efficiency (PCE) than their respective single-junction solar cells. However, such devices generally employ complex stacks with numerous deposition steps, which are rather unattractive from an industrial perspective. Here, we develop a simplified tandem architecture consisting of a perovskite n-i-p stack on a silicon heterojunction structure without applying the typically used indium-tin-oxide (ITO) recombination junction (RJ) layer between the top and bottom cells. It is demonstrated that an n-type hydrogenated nanocrystalline silicon (nc-Si:H) grown in situ on an amorphous silicon hole contact layer of the bottom cell acts as an efficient RJ layer, leading to a high open-circuit voltage (VOC) of >1.8 V and a PCE of 21.4% without optimizing the optical design. Compared to the tandem cell with an ITO RJ layer, the nc-Si:H RJ layer not only improves light management but also achieves a higher VOC due to superior contact properties with an overlying SnO2 electron transport layer of the perovskite top cell. Omitting the costly material and its deposition step offers the opportunity toward realizing industrially feasible high-efficiency tandem solar cells.

10.
ACS Omega ; 6(28): 17880-17889, 2021 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-34308023

RESUMO

A sodium chloride modification was applied where different amounts of sodium chloride was physically blended in a tin oxide colloid solution to passivate the interface between the electron transport layer (ETL) and perovskite layer and improve the performance of perovskite solar cells. Sodium chloride-modified tin oxide was utilized as the electron transport material to fabricate perovskite solar cells. It was found that sodium chloride-modified tin oxide as an ETL could considerably enhance the performance of the device compared to pristine tin oxide. The power conversion efficiency of the perovskite solar cell displayed 8.8% remarkable improvement from 18.7 ± 0.4% to 20.3 ± 0.3% on average and 9.5% improvement from 18.9 to 20.7% in champion devices because of the considerable enhancement of the fill factor when 25 mM sodium chloride-modified tin oxide as the ETL was used in comparison with pristine tin oxide.

11.
ACS Appl Mater Interfaces ; 9(42): 36708-36714, 2017 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-28981252

RESUMO

Perovskite solar cells (PSCs) without a mesoporous TiO2 layer, that is, planar-type PSCs exhibit poorer cell performance as compared to PSCs with a porous TiO2 layer, owing to inefficient electron transfer from the perovskite layer to the compact TiO2 layer in the former case. The matching of the conduction band levels of perovskite and the compact TiO2 layer is thus essential for enhancing PSC performance. In this study, we demonstrate the shifting of the conduction band edge (CBE) of the compact TiO2 layer through a TiCl4 treatment, with the aim of improving PSC performance. The CBE of the compact TiO2 layer was shifted to a higher level through the TiCl4 treatment and then shifted in the opposite direction, that is, to a lower level, through a subsequent heat treatment. These shifts in the CBE were reflected in the PSC performance. The TiCl4-treated PSC showed an increase in the open-circuit voltage of more than 150 mV, as well as a decrease of 100 mV after being heated at 450 °C. On the other hand, the short-circuit current decreased after the treatment but increased after heating at temperatures higher than 300 °C. The treated PSC subjected to subsequent heating at 300 °C exhibited the best performance, with the power conversion efficiency of the PSC being 17% under optimized conditions.

12.
Sci Rep ; 7(1): 12183, 2017 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-28939887

RESUMO

Potassium-doped organometal halide perovskite solar cells (PSCs) of more than 20% power conversion efficiency (PCE) without I-V hysteresis were constructed. The crystal lattice of the organometal halide perovskite was expanded with increasing of the potassium ratio, where both absorption and photoluminescence spectra shifted to the longer wavelength, suggesting that the optical band gap decreased. In the case of the perovskite with the 5% K+, the conduction band minimum (CBM) became similar to the CBM level of the TiO2-Li. In this situation, the electron transfer barrier at the interface between TiO2-Li and the perovskite was minimised. In fact, the transient current rise at the maximum power voltages of PSCs with 5% K+ was faster than that without K+. It is concluded that stagnation-less carrier transportation could minimise the I-V hysteresis of PSCs.

13.
Colloids Surf B Biointerfaces ; 48(1): 67-71, 2006 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-16500094

RESUMO

Adsorption condition and enzymatic activity of glucose oxidase (GOD) on polystyrene (PS) film surfaces modified with ozone aeration and UV irradiation (O3/UV) treatment were investigated. The total amount of GOD immobilized on the PS film modified with the O3/UV treatment in distilled water (PS-W film) was approximately twice as large as that on the film treated in an aqueous ammonia solution (PS-A film), whereas the specific activity of GOD on the PS-A film was four times higher than that on the PS-W film. In contrast, no enzymatic activity of GOD on the non-treated PS film was observed because of irreversible denaturation of the adsorbed GOD. We therefore conclude that the PS films modified by the O3/UV treatment in the aqueous media are effective in immobilizing GOD.


Assuntos
Amônia/química , Enzimas Imobilizadas/química , Glucose Oxidase/química , Ozônio/química , Poliestirenos/química , Água/química , Adsorção , Enzimas Imobilizadas/farmacocinética , Enzimas Imobilizadas/efeitos da radiação , Glucose Oxidase/farmacocinética , Glucose Oxidase/efeitos da radiação , Microscopia de Força Atômica , Soluções/química , Espectroscopia de Infravermelho com Transformada de Fourier , Propriedades de Superfície , Raios Ultravioleta
14.
Org Lett ; 18(4): 650-3, 2016 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-26824612

RESUMO

Concise synthesis of oligo(thienylene-vinylene) with a head-to-tail type structure is achieved by regioselective deprotonative coupling of 3-hexylthiophene. The palladium catalyzed reaction of 3-hexylthiophene with (E)-2-(2-bromoethenyl)-3-hexylthiophene takes place to afford head-to-tail type trans-1,2-dithienylethene. Further extension of a vinylthiophene unit is similarly performed in an iterative manner.

15.
Chem Commun (Camb) ; (26): 3346-8, 2005 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-15983669

RESUMO

A high-voltage photo-rechargeable capacitor (photocapacitor) of three-electrode configuration, comprising a dye-sensitized mesoporous TiO2 electrode, two carbon-coated electrodes, and two liquid electrolytes, attained a charge-state voltage of 0.8 V and high energy density per area of 47 microW h cm(-2) which is five times larger than the previous two-electrode photocapacitor.

16.
Science ; 338(6107): 643-7, 2012 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-23042296

RESUMO

The energy costs associated with separating tightly bound excitons (photoinduced electron-hole pairs) and extracting free charges from highly disordered low-mobility networks represent fundamental losses for many low-cost photovoltaic technologies. We report a low-cost, solution-processable solar cell, based on a highly crystalline perovskite absorber with intense visible to near-infrared absorptivity, that has a power conversion efficiency of 10.9% in a single-junction device under simulated full sunlight. This "meso-superstructured solar cell" exhibits exceptionally few fundamental energy losses; it can generate open-circuit photovoltages of more than 1.1 volts, despite the relatively narrow absorber band gap of 1.55 electron volts. The functionality arises from the use of mesoporous alumina as an inert scaffold that structures the absorber and forces electrons to reside in and be transported through the perovskite.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA