Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Arterioscler Thromb Vasc Biol ; 42(7): 831-838, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35510549

RESUMO

Clinical investigations have established that vascular-associated medical conditions are significant risk factors for various kinds of dementia. And yet, we are unable to associate certain types of vascular deficiencies with specific cognitive impairments. The reasons for this are many, not the least of which are that most vascular disorders are multi-factorial and the development of vascular dementia in humans is often a multi-year or multi-decade progression. To better study vascular disease and its underlying causes, the National Heart, Lung, and Blood Institute of the National Institutes of Health has invested considerable resources in the development of animal models that recapitulate various aspects of human vascular disease. Many of these models, mainly in the mouse, are based on genetic mutations, frequently using single-gene mutations to examine the role of specific proteins in vascular function. These models could serve as useful tools for understanding the association of specific vascular signaling pathways with specific neurological and cognitive impairments related to dementia. To advance the state of the vascular dementia field and improve the information sharing between the vascular biology and neurobehavioral research communities, National Heart, Lung, and Blood Institute convened a workshop to bring in scientists from these knowledge domains to discuss the potential utility of establishing a comprehensive phenotypic cognitive assessment of a selected set of existing mouse models, representative of the spectrum of vascular disorders, with particular attention focused on age, sex, and rigor and reproducibility. The workshop highlighted the potential of associating well-characterized vascular disease models, with validated cognitive outcomes, that can be used to link specific vascular signaling pathways with specific cognitive and neurobehavioral deficits.


Assuntos
Disfunção Cognitiva , Demência Vascular , Animais , Cognição , Disfunção Cognitiva/genética , Demência Vascular/genética , Camundongos , Fenótipo , Reprodutibilidade dos Testes
2.
J Biol Chem ; 296: 100715, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33930462

RESUMO

In Alzheimer's disease (AD), pathological forms of tau are transferred from cell to cell and "seed" aggregation of cytoplasmic tau. Phosphorylation of tau plays a key role in neurodegenerative tauopathies. In addition, apolipoprotein E (apoE), a major component of lipoproteins in the brain, is a genetic risk determinant for AD. The identification of the apoE receptor, low-density lipoprotein receptor-related protein 1 (LRP1), as an endocytic receptor for tau raises several questions about the role of LRP1 in tauopathies: is internalized tau, like other LRP1 ligands, delivered to lysosomes for degradation, and does LRP1 internalize pathological tau leading to cytosolic seeding? We found that LRP1 rapidly internalizes 125I-labeled tau, which is then efficiently degraded in lysosomal compartments. Surface plasmon resonance experiments confirm high affinity binding of tau and the tau microtubule-binding domain to LRP1. Interestingly, phosphorylated forms of recombinant tau bind weakly to LRP1 and are less efficiently internalized by LRP1. LRP1-mediated uptake of tau is inhibited by apoE, with the apoE4 isoform being the most potent inhibitor, likely because of its higher affinity for LRP1. Employing post-translationally-modified tau derived from brain lysates of human AD brain tissue, we found that LRP1-expressing cells, but not LRP1-deficient cells, promote cytosolic tau seeding in a process enhanced by apoE. These studies identify LRP1 as an endocytic receptor that binds and processes monomeric forms of tau leading to its degradation and promotes seeding by pathological forms of tau. The balance of these processes may be fundamental to the spread of neuropathology across the brain in AD.


Assuntos
Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Proteólise , Proteínas tau/metabolismo , Encéfalo/metabolismo , Regulação da Expressão Gênica , Humanos , Transporte Proteico
3.
Am J Physiol Heart Circ Physiol ; 320(5): H1786-H1801, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33635167

RESUMO

Thoracic aortic aneurysm and dissection (TAAD) is a deadly disease characterized by intimal disruption induced by hemodynamic forces of the circulation. The effect of exercise in patients with TAAD is largely unknown. ß-Aminopropionitrile (BAPN) is an irreversible inhibitor of lysyl oxidase that induces TAAD in mice. The objective of this study was to investigate the effect of aerobic exercise on BAPN-induced TAAD. Upon weaning, mice were given either BAPN-containing water or standard drinking water and subjected to either conventional cage activity (BAPN-CONV) or forced treadmill exercise (BAPN-EX) for up to 26 wk. Mortality was 23.5% (20/85) for BAPN-CONV mice versus 0% (0/22) for BAPN-EX mice (hazard ratio 3.8; P = 0.01). BAPN induced significant elastic lamina fragmentation and intimal-medial thickening compared with BAPN-untreated controls, and aneurysms were identified in 50% (5/10) of mice that underwent contrast-enhanced CT scanning. Exercise significantly decreased BAPN-induced wall thickening, calculated circumferential wall tension, and lumen diameter, with 0% (0/5) of BAPN-EX demonstrating chronic aortic aneurysm formation on CT scan. Expression of selected genes relevant to vascular diseases was analyzed by qRT-PCR. Notably, exercise normalized BAPN-induced increases in TGF-ß pathway-related genes Cd109, Smad4, and Tgfßr1; inflammation-related genes Vcam1, Bcl2a1, Ccr2, Pparg, Il1r1, Il1r1, Itgb2, and Itgax; and vascular injury- and response-related genes Mmp3, Fn1, and Vwf. Additionally, exercise significantly increased elastin expression in BAPN-treated animals compared with controls. This study suggests that moderate aerobic exercise may be safe and effective in preventing the most devastating outcomes in TAAD.NEW & NOTEWORTHY Moderate aerobic exercise was shown to significantly reduce mortality, extracellular matrix degradation, and thoracic aortic aneurysm and dissection formation associated with lysyl oxidase inhibition in a mouse model. Gene expression suggested a reversal of TGF-ß, inflammation, and extracellular matrix remodeling pathway dysregulation, along with augmented elastogenesis with exercise.


Assuntos
Aorta Torácica/patologia , Aneurisma da Aorta Torácica/terapia , Dissecção Aórtica/terapia , Ruptura Aórtica/prevenção & controle , Terapia por Exercício , Matriz Extracelular/patologia , Remodelação Vascular , Aminopropionitrilo , Dissecção Aórtica/induzido quimicamente , Dissecção Aórtica/metabolismo , Dissecção Aórtica/patologia , Animais , Aorta Torácica/metabolismo , Aorta Torácica/fisiopatologia , Aneurisma da Aorta Torácica/induzido quimicamente , Aneurisma da Aorta Torácica/metabolismo , Aneurisma da Aorta Torácica/patologia , Ruptura Aórtica/induzido quimicamente , Ruptura Aórtica/metabolismo , Ruptura Aórtica/patologia , Dilatação Patológica , Modelos Animais de Doenças , Progressão da Doença , Matriz Extracelular/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Regulação da Expressão Gênica , Hemodinâmica , Masculino , Camundongos Endogâmicos C57BL , Proteólise , Transdução de Sinais
4.
Biochemistry ; 59(32): 2922-2933, 2020 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-32702237

RESUMO

Matrix metalloprotease (MMP) activation contributes to the degradation of the extracellular matrix (ECM), resulting in a multitude of pathologies. Low-density lipoprotein receptor-related protein 1 (LRP1) is a multifaceted endocytic and signaling receptor that is responsible for internalization and lysosomal degradation of diverse proteases, protease inhibitors, and lipoproteins along with numerous other proteins. In this study, we identified MMP-1 as a novel LRP1 ligand. Binding studies employing surface plasmon resonance revealed that both proMMP-1 and active MMP-1 bind to purified LRP1 with equilibrium dissociation constants (KD) of 19 and 25 nM, respectively. We observed that human aortic smooth muscle cells readily internalize and degrade 125I-labeled proMMP-1 in an LRP1-mediated process. Our binding data also revealed that all tissue inhibitors of metalloproteases (TIMPs) bind to LRP1 with KD values ranging from 23 to 33 nM. Interestingly, the MMP-1/TIMP-1 complex bound to LRP1 with an affinity (KD = 0.6 nM) that was 30-fold higher than that of either component alone, revealing that LRP1 prefers the protease:inhibitor complex as a ligand. Of note, modification of lysine residues on either proMMP-1 or TIMP-1 ablated the ability of the MMP-1/TIMP-1 complex to bind to LRP1. LRP1's preferential binding to enzyme:inhibitor complexes was further supported by the higher binding affinity for proMMP-9/TIMP-1 complexes than for either of these two components alone. LRP1 has four clusters of ligand-binding repeats, and MMP-1, TIMP-1, and MMP-1/TIMP-1 complexes bound to cluster III most avidly. Our results reveal an important role for LRP1 in controlling ECM homeostasis by regulating MMP-1 and MMP-9 levels.


Assuntos
Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Metaloproteinase 1 da Matriz/metabolismo , Inibidor Tecidual de Metaloproteinase-1/metabolismo , Animais , Aorta/citologia , Linhagem Celular , Endocitose , Ativação Enzimática , Regulação da Expressão Gênica , Humanos , Masculino , Camundongos , Miócitos de Músculo Liso/metabolismo , Ligação Proteica
5.
Arterioscler Thromb Vasc Biol ; 38(11): 2651-2664, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30354243

RESUMO

Objective- Mutations affecting contractile-related proteins in the ECM (extracellular matrix), microfibrils, or vascular smooth muscle cells can predispose the aorta to aneurysms. We reported previously that the LRP1 (low-density lipoprotein receptor-related protein 1) maintains vessel wall integrity, and smLRP1-/- mice exhibited aortic dilatation. The current study focused on defining the mechanisms by which LRP1 regulates vessel wall function and integrity. Approach and Results- Isometric contraction assays demonstrated that vasoreactivity of LRP1-deficient aortic rings was significantly attenuated when stimulated with vasoconstrictors, including phenylephrine, thromboxane receptor agonist U-46619, increased potassium, and L-type Ca2+ channel ligand FPL-64176. Quantitative proteomics revealed proteins involved in actin polymerization and contraction were significantly downregulated in aortas of smLRP1-/- mice. However, studies with calyculin A indicated that although aortic muscle from smLRP1-/- mice can contract in response to calyculin A, a role for LRP1 in regulating the contractile machinery is not revealed. Furthermore, intracellular calcium imaging experiments identified defects in calcium release in response to a RyR (ryanodine receptor) agonist in smLRP1-/- aortic rings and cultured vascular smooth muscle cells. Conclusions- These results identify a critical role for LRP1 in modulating vascular smooth muscle cell contraction by regulating calcium signaling events that potentially protect against aneurysm development.


Assuntos
Citoesqueleto de Actina/metabolismo , Sinalização do Cálcio , Proteínas do Citoesqueleto/metabolismo , Músculo Liso Vascular/metabolismo , Receptores de LDL/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Vasoconstrição , Citoesqueleto de Actina/efeitos dos fármacos , Citoesqueleto de Actina/genética , Citoesqueleto de Actina/ultraestrutura , Animais , Aorta/metabolismo , Canais de Cálcio/genética , Canais de Cálcio/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Proteínas do Citoesqueleto/genética , Feminino , Regulação da Expressão Gênica , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade , Masculino , Camundongos Knockout , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/ultraestrutura , Receptores de LDL/deficiência , Receptores de LDL/genética , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Técnicas de Cultura de Tecidos , Proteínas Supressoras de Tumor/deficiência , Proteínas Supressoras de Tumor/genética , Vasoconstrição/efeitos dos fármacos , Vasoconstritores/farmacologia
6.
Mediators Inflamm ; 2018: 7902841, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30524198

RESUMO

Hepatic inflammation is associated with the development of insulin resistance, which can perpetuate the disease state and may increase the risk of metabolic syndrome and diabetes. Despite recent advances, mechanisms linking hepatic inflammation and insulin resistance are still unclear. The low-density lipoprotein receptor-related protein 1 (LRP1) is a large endocytic and signaling receptor that is highly expressed in macrophages, adipocytes, hepatocytes, and vascular smooth muscle cells. To investigate the potential role of macrophage LRP1 in hepatic inflammation and insulin resistance, we conducted experiments using macrophage-specific LRP1-deficient mice (macLRP1-/- ) generated on a low-density lipoprotein receptor knockout (LDLR-/- ) background and fed a Western diet. LDLR-/-; macLRP1-/- mice gained less body weight and had improved glucose tolerance compared to LDLR-/- mice. Livers from LDLR-/-; macLRP1-/- mice displayed lower levels of gene expression for several inflammatory cytokines, including Ccl3, Ccl4, Ccl8, Ccr1, Ccr2, Cxcl9, and Tnf, and reduced phosphorylation of GSK3α and p38 MAPK proteins. Furthermore, LRP1-deficient peritoneal macrophages displayed altered cholesterol metabolism. Finally, circulating levels of sFRP-5, a potent anti-inflammatory adipokine that functions as a decoy receptor for Wnt5a, were elevated in LDLR-/-; macLRP1-/- mice. Surface plasmon resonance experiments revealed that sFRP-5 is a novel high affinity ligand for LRP1, revealing that LRP1 regulates levels of this inhibitor of Wnt5a-mediated signaling. Collectively, our results suggest that LRP1 expression in macrophages promotes hepatic inflammation and the development of glucose intolerance and insulin resistance by modulating Wnt signaling.


Assuntos
Inflamação/imunologia , Inflamação/metabolismo , Fígado/imunologia , Fígado/metabolismo , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Macrófagos/metabolismo , Animais , Dieta , Teste de Tolerância a Glucose , Immunoblotting , Insulina/genética , Insulina/metabolismo , Resistência à Insulina/genética , Resistência à Insulina/fisiologia , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Masculino , Camundongos , Camundongos Knockout , Triglicerídeos/sangue , Via de Sinalização Wnt/fisiologia
7.
Arterioscler Thromb Vasc Biol ; 35(1): 155-62, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25395615

RESUMO

OBJECTIVE: Low-density lipoprotein receptor-related protein 1 (LRP1), a multifunctional protein involved in endocytosis and cell signaling pathways, leads to several vascular pathologies when deleted in vascular smooth muscle cells (SMCs). The purpose of this study was to determine whether LRP1 deletion in SMCs influenced angiotensin II-induced arterial pathologies. APPROACH AND RESULTS: LRP1 protein abundance was equivalent in selected arterial regions, but SMC-specific LRP1 depletion had no effect on abdominal and ascending aortic diameters in young mice. To determine the effects of LRP1 deficiency on angiotensin II vascular responses, SMC-specific LRP1 (smLRP1(+/+)) and smLRP1-deficient (smLRP1(-/-)) mice were infused with saline, angiotensin II, or norepinephrine. Several smLRP(-/-) mice died of superior mesenteric arterial (SMA) rupture during angiotensin II infusion. In surviving mice, angiotensin II profoundly augmented SMA dilation in smLRP1(-/-) mice. SMA dilation was blood pressure dependent as demonstrated by a similar response during norepinephrine infusion. SMA dilation was also associated with profound macrophage accumulation, but minimal elastin fragmentation. Angiotensin II infusion led to no significant differences in abdominal aorta diameters between smLRP1(+/+) and smLRP1(-/-) mice. In contrast, ascending aortic dilation was exacerbated markedly in angiotensin II-infused smLRP1(-/-) mice, but norepinephrine had no significant effect on either aortic region. Ascending aortas of smLRP1(-/-) mice infused with angiotensin II had minimal macrophage accumulation but significantly increased elastin fragmentation and mRNA abundance of several LRP1 ligands including MMP-2 (matrix metalloproteinase-2) and uPA (urokinase plasminogen activator). CONCLUSIONS: smLRP1 deficiency had no effect on angiotensin II-induced abdominal aortic aneurysm formation. Conversely, angiotensin II infusion in smLRP1(-/-) mice exacerbated SMA and ascending aorta dilation. Dilation in these 2 regions had differential association with blood pressure and divergent pathological characteristics.


Assuntos
Aneurisma/metabolismo , Angiotensina II , Aneurisma Aórtico/metabolismo , Deleção de Genes , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Receptores de LDL/deficiência , Proteínas Supressoras de Tumor/deficiência , Aneurisma/induzido quimicamente , Aneurisma/genética , Aneurisma/patologia , Aneurisma/fisiopatologia , Animais , Aorta Abdominal/metabolismo , Aorta Abdominal/patologia , Aneurisma Aórtico/induzido quimicamente , Aneurisma Aórtico/genética , Aneurisma Aórtico/patologia , Aneurisma Aórtico/fisiopatologia , Aneurisma da Aorta Abdominal/induzido quimicamente , Aneurisma da Aorta Abdominal/genética , Aneurisma da Aorta Abdominal/metabolismo , Aneurisma da Aorta Abdominal/patologia , Pressão Arterial , Células Cultivadas , Dilatação Patológica , Modelos Animais de Doenças , Elastina/metabolismo , Ligantes , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade , Macrófagos/metabolismo , Masculino , Metaloproteinase 2 da Matriz/genética , Metaloproteinase 2 da Matriz/metabolismo , Artéria Mesentérica Superior/metabolismo , Artéria Mesentérica Superior/patologia , Camundongos Knockout , Músculo Liso Vascular/patologia , Músculo Liso Vascular/fisiopatologia , Miócitos de Músculo Liso/patologia , Norepinefrina , RNA Mensageiro/metabolismo , Receptores de LDL/genética , Proteínas Supressoras de Tumor/genética , Ativador de Plasminogênio Tipo Uroquinase/genética , Ativador de Plasminogênio Tipo Uroquinase/metabolismo
8.
Lab Invest ; 95(10): 1117-29, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26237273

RESUMO

Hepatic stellate cell (HSC) activation and trans-differentiation into myofibroblast (MFB)-like cells is key for fibrogenesis after liver injury and a potential therapeutic target. Recent studies demonstrated that low-density lipoprotein receptor-related protein 1 (LRP1)-dependent signaling by tissue-type plasminogen activator (t-PA) is a pro-fibrotic regulator of the MFB phenotype in kidney. This study investigated whether LRP1 signaling by t-PA is also relevant to HSC activation following injury. Primary and immortalized rat HSCs were treated with t-PA and assayed by western blot, MTT, and TUNEL. In vitro results were then verified using an in vivo, acute carbon tetrachloride (CCl4) injury model that examined the phenotype and recovery kinetics of MFBs from wild-type animals vs mice with a global (t-PA) or HSC-targeted (LRP1) deletion. In vitro, in contrast to kidney MFBs, exogenous, proteolytically inactive t-PA suppressed, rather than induced, activation markers in HSCs following phosphorylation of LRP1. This process was mediated by LRP1 as inhibition of t-PA binding to LRP1 blocked the effects of t-PA. In vivo, following acute injury, phosphorylation of LRP1 on activated HSCs occurred immediately prior to their disappearance. Mice lacking t-PA or LRP1 retained higher densities of activated HSCs for a longer time period compared with control mice after injury cessation. Hence, t-PA, an FDA-approved drug, contributes to the suppression of activated HSCs following injury repair via signaling through LRP1. This renders t-PA a potential target for exploitation in treating patients with fibrosis.


Assuntos
Fibrinolíticos/farmacologia , Células Estreladas do Fígado/efeitos dos fármacos , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/agonistas , Miofibroblastos/efeitos dos fármacos , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Ativador de Plasminogênio Tecidual/farmacologia , Animais , Tetracloreto de Carbono/antagonistas & inibidores , Tetracloreto de Carbono/toxicidade , Intoxicação por Tetracloreto de Carbono/tratamento farmacológico , Intoxicação por Tetracloreto de Carbono/metabolismo , Intoxicação por Tetracloreto de Carbono/patologia , Linhagem Celular Transformada , Transdiferenciação Celular/efeitos dos fármacos , Células Cultivadas , Fibrinolíticos/metabolismo , Fibrinolíticos/uso terapêutico , Células Estreladas do Fígado/citologia , Células Estreladas do Fígado/metabolismo , Células Estreladas do Fígado/patologia , Humanos , Ligantes , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Miofibroblastos/citologia , Miofibroblastos/metabolismo , Miofibroblastos/patologia , Fosforilação/efeitos dos fármacos , Ratos , Ratos Endogâmicos F344 , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacologia , Proteínas Recombinantes/uso terapêutico , Solventes/química , Solventes/toxicidade , Ativador de Plasminogênio Tecidual/genética , Ativador de Plasminogênio Tecidual/metabolismo , Ativador de Plasminogênio Tecidual/uso terapêutico
9.
Arterioscler Thromb Vasc Biol ; 34(3): 487-98, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24504736

RESUMO

Low-density lipoprotein receptor-related protein-1 (LRP1) is a large endocytic and signaling receptor that is widely expressed. In the liver, LRP1 plays an important role in regulating the plasma levels of blood coagulation factor VIII (fVIII) by mediating its uptake and subsequent degradation. fVIII is a key plasma protein that is deficient in hemophilia A and circulates in complex with von Willebrand factor. Because von Willebrand factor blocks binding of fVIII to LRP1, questions remain on the molecular mechanisms by which LRP1 removes fVIII from the circulation. LRP1 also regulates cell surface levels of tissue factor, a component of the extrinsic blood coagulation pathway. This occurs when tissue factor pathway inhibitor bridges the fVII/tissue factor complex to LRP1, resulting in rapid LRP1-mediated internalization and downregulation of coagulant activity. In the vasculature LRP1 also plays protective role from the development of aneurysms. Mice in which the lrp1 gene is selectively deleted in vascular smooth muscle cells develop a phenotype similar to the progression of aneurysm formation in human patient, revealing that these mice are ideal for investigating molecular mechanisms associated with aneurysm formation. Studies suggest that LRP1 protects against elastin fiber fragmentation by reducing excess protease activity in the vessel wall. These proteases include high-temperature requirement factor A1, matrix metalloproteinase 2, matrix metalloproteinase-9, and membrane associated type 1-matrix metalloproteinase. In addition, LRP1 regulates matrix deposition, in part, by modulating levels of connective tissue growth factor. Defining pathways modulated by LRP1 that lead to aneurysm formation and defining its role in thrombosis may allow for more effective intervention in patients.


Assuntos
Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/fisiologia , Aneurisma/prevenção & controle , Animais , Aterosclerose/metabolismo , Coagulação Sanguínea/fisiologia , Elastina/metabolismo , Endocitose/fisiologia , Matriz Extracelular/metabolismo , Fator VIII/metabolismo , Humanos , Lipoproteínas LDL/metabolismo , Fígado/metabolismo , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/química , Macrófagos/metabolismo , Camundongos , Camundongos Knockout , Modelos Animais , Modelos Moleculares , Músculo Liso Vascular/metabolismo , Especificidade de Órgãos , Peptídeo Hidrolases/metabolismo , Fator de Crescimento Derivado de Plaquetas/metabolismo , Conformação Proteica , Receptores de LDL/deficiência , Receptores de LDL/genética , Receptores de LDL/fisiologia , Transdução de Sinais , Tromboplastina/metabolismo , Fator de Crescimento Transformador beta/fisiologia , Proteínas Supressoras de Tumor/deficiência , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/fisiologia , Fator de von Willebrand/metabolismo
10.
Arterioscler Thromb Vasc Biol ; 33(9): 2137-46, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23868935

RESUMO

OBJECTIVE: Low-density lipoprotein receptor-related protein 1 (LRP1) is a large endocytic and signaling receptor that is abundant in vascular smooth muscle cells. Mice in which the lrp1 gene is deleted in smooth muscle cells (smLRP1(-/-)) on a low-density lipoprotein receptor-deficient background display excessive platelet derived growth factor-signaling, smooth muscle cell proliferation, aneurysm formation, and increased susceptibility to atherosclerosis. The objectives of the current study were to examine the potential of LRP1 to modulate vascular physiology under nonatherogenic conditions. APPROACH AND RESULTS: We found smLRP1(-/-) mice to have extensive in vivo aortic dilatation accompanied by disorganized and degraded elastic lamina along with medial thickening of the arterial vessels resulting from excess matrix deposition. Surprisingly, this was not attributable to excessive platelet derived growth factor-signaling. Rather, quantitative differential proteomic analysis revealed that smLRP1(-/-) vessels contain a 4-fold increase in protein levels of high-temperature requirement factor A1 (HtrA1), which is a secreted serine protease that is known to degrade matrix components and to impair elastogenesis, resulting in fragmentation of elastic fibers. Importantly, our study discovered that HtrA1 is a novel LRP1 ligand. Proteomics analysis also identified excessive accumulation of connective tissue growth factor, an LRP1 ligand and a key mediator of fibrosis. CONCLUSIONS: Our findings suggest a critical role for LRP1 in maintaining the integrity of vessels by regulating protease activity as well as matrix deposition by modulating HtrA1 and connective tissue growth factor protein levels. This study highlights 2 new molecules, connective tissue growth factor and HtrA1, which contribute to detrimental changes in the vasculature and, therefore, represent new target molecules for potential therapeutic intervention to maintain vessel wall homeostasis.


Assuntos
Aorta/enzimologia , Aortite/enzimologia , Fator de Crescimento do Tecido Conjuntivo/metabolismo , Miócitos de Músculo Liso/enzimologia , Receptores de LDL/metabolismo , Serina Endopeptidases/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Fatores Etários , Envelhecimento , Animais , Aorta/fisiopatologia , Aorta/ultraestrutura , Aortite/genética , Aortite/patologia , Aortite/fisiopatologia , Pressão Sanguínea , Células Cultivadas , Dilatação Patológica , Tecido Elástico/metabolismo , Endocitose , Ativação Enzimática , Matriz Extracelular/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Fibrose , Serina Peptidase 1 de Requerimento de Alta Temperatura A , Ligantes , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade , Masculino , Camundongos , Camundongos Knockout , Proteômica/métodos , Receptores de LDL/deficiência , Receptores de LDL/genética , Proteínas Supressoras de Tumor/deficiência , Proteínas Supressoras de Tumor/genética
11.
J Clin Invest ; 133(17)2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37655664

RESUMO

The lymphatic system (LS) is composed of lymphoid organs and a network of vessels that transport interstitial fluid, antigens, lipids, cholesterol, immune cells, and other materials in the body. Abnormal development or malfunction of the LS has been shown to play a key role in the pathophysiology of many disease states. Thus, improved understanding of the anatomical and molecular characteristics of the LS may provide approaches for disease prevention or treatment. Recent advances harnessing single-cell technologies, clinical imaging, discovery of biomarkers, and computational tools have led to the development of strategies to study the LS. This Review summarizes the outcomes of the NIH workshop entitled "Yet to be Charted: Lymphatic System in Health and Disease," held in September 2022, with emphasis on major areas for advancement. International experts showcased the current state of knowledge regarding the LS and highlighted remaining challenges and opportunities to advance the field.


Assuntos
Sistema Linfático , Vasos Linfáticos
12.
Front Physiol ; 14: 1099403, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36814475

RESUMO

Enhancing our understanding of lymphatic anatomy from the microscopic to the anatomical scale is essential to discern how the structure and function of the lymphatic system interacts with different tissues and organs within the body and contributes to health and disease. The knowledge of molecular aspects of the lymphatic network is fundamental to understand the mechanisms of disease progression and prevention. Recent advances in mapping components of the lymphatic system using state of the art single cell technologies, the identification of novel biomarkers, new clinical imaging efforts, and computational tools which attempt to identify connections between these diverse technologies hold the potential to catalyze new strategies to address lymphatic diseases such as lymphedema and lipedema. This manuscript summarizes current knowledge of the lymphatic system and identifies prevailing challenges and opportunities to advance the field of lymphatic research as discussed by the experts in the workshop.

13.
JCI Insight ; 8(2)2023 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-36472907

RESUMO

Vascular smooth muscle cells (vSMCs) exert a critical role in sensing and maintaining vascular integrity. These cells abundantly express the low-density lipoprotein receptor-related protein 1 (LRP1), a large endocytic signaling receptor that recognizes numerous ligands, including apolipoprotein E-rich lipoproteins, proteases, and protease-inhibitor complexes. We observed the spontaneous formation of aneurysms in the superior mesenteric artery (SMA) of both male and female mice in which LRP1 was genetically deleted in vSMCs (smLRP1-/- mice). Quantitative proteomics revealed elevated abundance of several proteins in smLRP1-/- mice that are known to be induced by angiotensin II-mediated (AngII-mediated) signaling, suggesting that this pathway was dysregulated. Administration of losartan, an AngII type I receptor antagonist, or an angiotensinogen antisense oligonucleotide to reduce plasma angiotensinogen concentrations restored the normal SMA phenotype in smLRP1-/- mice and prevented aneurysm formation. Additionally, using a vascular injury model, we noted excessive vascular remodeling and neointima formation in smLRP1-/- mice that was restored by losartan administration. Together, these findings reveal that LRP1 regulates vascular integrity and remodeling of the SMA by attenuating excessive AngII-mediated signaling.


Assuntos
Angiotensina II , Artéria Mesentérica Superior , Masculino , Feminino , Camundongos , Animais , Artéria Mesentérica Superior/metabolismo , Angiotensinogênio , Losartan , Transdução de Sinais , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo
15.
J Biol Chem ; 285(19): 14308-17, 2010 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-20220145

RESUMO

In addition to its endocytic function, the low density lipoprotein receptor-related protein 1 (LRP1) also contributes to cell signaling events. In the current study, the potential of LRP1 to modulate the platelet-derived growth factor (PDGF) signaling pathway was investigated. PDGF is a key regulator of cell migration and proliferation and mediates the tyrosine phosphorylation of LRP1 within its cytoplasmic domain. In WI-38 fibroblasts, PDGF-mediated LRP1 tyrosine phosphorylation occurred at 37 degrees C but not at 4 degrees C, where endocytosis is minimized. Furthermore, blockade of endocytosis with the dynamin inhibitor, dynasore, also prevented PDGF-mediated LRP1 tyrosine phosphorylation. Immunofluorescence studies revealed co-localization of LRP1 with the PDGF receptor after PDGF treatment within endosomal compartments, whereas surface biotinylation experiments confirmed that phosphorylated LRP1 primarily originates from intracellular compartments. Together, the data reveal the association of these two receptors in endosomal compartments where they form a signaling complex. To study the contribution of LRP1 to PDGF signaling, we used mouse embryonic fibroblasts genetically deficient in LRP1 and identified phenotypic changes in these cell lines in response to PDGF stimulation by performing phospho-site profiling. Of 38 phosphorylated proteins analyzed, 8 were significantly different in LRP1 deficient fibroblasts and were restored when LRP1 was expressed back in these cells. Importantly, the results revealed that LRP1 expression is necessary for PDGF-mediated activation of ERK. Overall, the studies reveal that LRP1 associates with the PDGF receptor in endosomal compartments and modulates its signaling properties affecting the MAPK and Akt/phosphatidylinositol 3-kinase pathways.


Assuntos
Endossomos/metabolismo , Fibroblastos/metabolismo , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Fator de Crescimento Derivado de Plaquetas/metabolismo , Receptor beta de Fator de Crescimento Derivado de Plaquetas/metabolismo , Animais , Biotinilação , Proliferação de Células , Células Cultivadas , Endocitose , Ativação Enzimática , Humanos , Immunoblotting , Imunoprecipitação , Camundongos , Fosforilação , Tirosina/metabolismo
16.
J Cell Biol ; 173(4): 533-44, 2006 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-16717128

RESUMO

The activity of the p53 gene product is regulated by a plethora of posttranslational modifications. An open question is whether such posttranslational changes act redundantly or dependently upon one another. We show that a functional interference between specific acetylated and phosphorylated residues of p53 influences cell fate. Acetylation of lysine 320 (K320) prevents phosphorylation of crucial serines in the NH(2)-terminal region of p53; only allows activation of genes containing high-affinity p53 binding sites, such as p21/WAF; and promotes cell survival after DNA damage. In contrast, acetylation of K373 leads to hyperphosphorylation of p53 NH(2)-terminal residues and enhances the interaction with promoters for which p53 possesses low DNA binding affinity, such as those contained in proapoptotic genes, leading to cell death. Further, acetylation of each of these two lysine clusters differentially regulates the interaction of p53 with coactivators and corepressors and produces distinct gene-expression profiles. By analogy with the "histone code" hypothesis, we propose that the multiple biological activities of p53 are orchestrated and deciphered by different "p53 cassettes," each containing combination patterns of posttranslational modifications and protein-protein interactions.


Assuntos
Ciclo Celular/genética , Regulação da Expressão Gênica/genética , Processamento de Proteína Pós-Traducional/genética , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Acetilação , Sequência de Aminoácidos/fisiologia , Apoptose/genética , Sítios de Ligação/genética , Linhagem Celular Tumoral , Sobrevivência Celular/genética , Transformação Celular Neoplásica/genética , Genes cdc/fisiologia , Humanos , Lisina/metabolismo , Fosforilação , Regiões Promotoras Genéticas/genética , Ligação Proteica/genética , Estrutura Terciária de Proteína/fisiologia , Elementos Reguladores de Transcrição/genética , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Proteína Supressora de Tumor p53/química
17.
Proc Natl Acad Sci U S A ; 105(39): 14952-7, 2008 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-18815369

RESUMO

Intercellular signaling by bone morphogenetic proteins (BMPs) regulates developmental decisions in virtually all animals. Here, we report that Decapentaplegic (Dpp; a Drosophila BMP family member) plays a role in blood cell homeostasis and immune responses by regulating a transcription factor cascade. The cascade begins with Dpp repression of Zfh1, continues with Zfh1 activation of Serpent (Srp; a GATA factor), and terminates with Srp activation of U-shaped (Ush) in hematopoietic cells. Hyperactivation of Zfh1, Srp, and Ush in dpp mutants leads to hyperplasia of plasmatocytes. Salmonella challenge revealed that in dpp mutants the misregulation of this cascade also prevents the generation of lamellocytes. These findings support the hypothesis that Ush participates in a switch between plasmatocyte and lamellocyte fate in a common precursor and further suggests a mechanism for how all blood cell types can arise from a single progenitor. These results also demonstrate that combining Drosophila and Salmonella genetics can provide novel opportunities for advancing our knowledge of hematopoiesis and innate immunity.


Assuntos
Proteínas Morfogenéticas Ósseas/fisiologia , Proteínas de Drosophila/fisiologia , Drosophila melanogaster/imunologia , Hematopoese , Imunidade Inata , Animais , Células Sanguíneas/fisiologia , Proteínas Morfogenéticas Ósseas/genética , Proteínas de Ligação a DNA/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/embriologia , Drosophila melanogaster/genética , Drosophila melanogaster/microbiologia , Fatores de Transcrição GATA/genética , Regulação da Expressão Gênica , Hematopoese/genética , Homeostase , Imunidade Inata/genética , Intestinos/microbiologia , Mutação , Proteínas Repressoras/genética , Salmonella typhimurium/imunologia , Transdução de Sinais , Fatores de Transcrição/genética , Transcrição Gênica
18.
Dev Biol ; 311(2): 636-49, 2007 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-17869239

RESUMO

The Drosophila GATA factor Serpent interacts with the RUNX factor Lozenge to activate the crystal cell program, whereas SerpentNC binds the Friend of GATA protein U-shaped to limit crystal cell production. Here, we identified a lozenge minimal hematopoietic cis-regulatory module and showed that lozenge-lacZ reporter-gene expression was autoregulated by Serpent and Lozenge. We also showed that upregulation of u-shaped was delayed until after lozenge activation, consistent with our previous results that showed u-shaped expression in the crystal cell lineage is dependent on both Serpent and Lozenge. Together, these observations describe a feed forward regulatory motif, which controls the temporal expression of u-shaped. Finally, we showed that lozenge reporter-gene activity increased in a u-shaped mutant background and that forced expression of SerpentNC with U-shaped blocked lozenge- and u-shaped-lacZ reporter-gene activity. This is the first demonstration of GATA:FOG regulation of Runx and Fog gene expression. Moreover, these results identify components of a Serpent cross-regulatory sub-circuit that can modulate lozenge expression. Based on the sub-circuit design and the combinatorial control of crystal cell production, we present a model for the specification of a dynamic bi-potential regulatory state that contributes to the selection between a Lozenge-positive and Lozenge-negative state.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Fatores de Transcrição GATA/metabolismo , Hematopoese/fisiologia , Hemócitos/fisiologia , Fatores de Transcrição/metabolismo , Animais , Animais Geneticamente Modificados , Linhagem da Célula , Proteínas de Ligação a DNA/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/citologia , Drosophila melanogaster/embriologia , Fatores de Transcrição GATA/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Genes Reporter , Hemócitos/citologia , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Fatores de Transcrição/genética
19.
Mol Cell Biol ; 25(18): 8215-27, 2005 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16135810

RESUMO

In Drosophila and several other metazoan organisms, there are two genes that encode related but distinct homologs of ADA2-type transcriptional adaptors. Here we describe mutations of the two Ada2 genes of Drosophila melanogaster. By using mutant Drosophila lines, which allow the functional study of individual ADA2s, we demonstrate that both Drosophila Ada2 genes are essential. Ada2a and Ada2b null homozygotes are late-larva and late-pupa lethal, respectively. Double mutants have a phenotype identical to that of the Ada2a mutant. The overproduction of ADA2a protein from transgenes cannot rescue the defects resulting from the loss of Ada2b, nor does complementation work vice versa, indicating that the two Ada2 genes of Drosophila have different functions. An analysis of germ line mosaics generated by pole-cell transplantation revealed that the Ada2a function (similar to that reported for Ada2b) is required in the female germ line. A loss of the function of either of the Ada2 genes interferes with cell proliferation. Interestingly, the Ada2b null mutation reduces histone H3 K14 and H3 K9 acetylation and changes TAF10 localization, while the Ada2a null mutation does not. Moreover, the two ADA2s are differently required for the expression of the rosy gene, involved in eye pigment production, and for Dmp53-mediated apoptosis. The data presented here demonstrate that the two genes encoding homologous transcriptional adaptor ADA2 proteins in Drosophila are both essential but are functionally distinct.


Assuntos
Acetiltransferases/fisiologia , Proteínas de Drosophila/fisiologia , Drosophila melanogaster/crescimento & desenvolvimento , Acetilação , Acetiltransferases/genética , Animais , Cromossomos/química , Cromossomos/metabolismo , Proteínas de Drosophila/análise , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Olho/metabolismo , Feminino , Genes de Insetos , Histona Acetiltransferases , Histonas/metabolismo , Mutação , Nucleossomos/metabolismo , Óvulo/metabolismo , Fenótipo , Pigmentos Biológicos/genética , Pigmentos Biológicos/metabolismo , Fatores Associados à Proteína de Ligação a TATA/análise , Fatores Associados à Proteína de Ligação a TATA/metabolismo , Transativadores/metabolismo , Fator de Transcrição TFIID/análise , Fator de Transcrição TFIID/metabolismo , Transcrição Gênica , Transgenes , Proteína Supressora de Tumor p53
20.
J Vis Exp ; (137)2018 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-30059027

RESUMO

Aortic aneurysm and dissection is associated with significant morbidity and mortality in the population and can be highly lethal. While animal models of aortic disease exist, in vivo imaging of the vasculature has been limited. In recent years, micro-computerized tomography (micro-CT) has emerged as a preferred modality for imaging both large and small vessels both in vivo and ex vivo. In conjunction with a method of vascular casting, we have successfully used micro-CT to characterize the frequency and distribution of aortic pathology in ß-aminopropionitrile-treated C57/Bl6 mice. Technical limitations of this method include variations in the quality of the perfusion introduced by poor animal preparation, the application of proper methodologies for vessel size quantification, and the non-survivability of this procedure. This article details a methodology for the intravascular perfusion of a lead-based radiopaque silicone rubber for the quantitative characterization of aortopathy in a mouse model of aneurysm and dissection. In addition to visualizing aortic pathology, this method may be used for examining other vascular beds in vivo or vascular beds removed post-mortem.


Assuntos
Aneurisma Aórtico/induzido quimicamente , Dissecação/métodos , Microtomografia por Raio-X/métodos , Animais , Aneurisma Aórtico/terapia , Modelos Animais de Doenças , Humanos , Masculino , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA