RESUMO
How a chance discovery in the Tasmanian rainforest changed the course of my scientific career.
Assuntos
Neoplasias Faciais/veterinária , Marsupiais , Neoplasias/veterinária , Medicina Veterinária/história , Animais , Doenças Transmissíveis/veterinária , Neoplasias Faciais/genética , Neoplasias Faciais/fisiopatologia , Genômica , História do Século XXI , TasmâniaRESUMO
The mammalian radiation has corresponded with rapid changes in noncoding regions of the genome, but we lack a comprehensive understanding of regulatory evolution in mammals. Here, we track the evolution of promoters and enhancers active in liver across 20 mammalian species from six diverse orders by profiling genomic enrichment of H3K27 acetylation and H3K4 trimethylation. We report that rapid evolution of enhancers is a universal feature of mammalian genomes. Most of the recently evolved enhancers arise from ancestral DNA exaptation, rather than lineage-specific expansions of repeat elements. In contrast, almost all liver promoters are partially or fully conserved across these species. Our data further reveal that recently evolved enhancers can be associated with genes under positive selection, demonstrating the power of this approach for annotating regulatory adaptations in genomic sequences. These results provide important insight into the functional genetics underpinning mammalian regulatory evolution.
Assuntos
Elementos Facilitadores Genéticos , Evolução Molecular , Fígado/metabolismo , Mamíferos/classificação , Mamíferos/genética , Regiões Promotoras Genéticas , Animais , Código das Histonas , Humanos , Fatores de Transcrição/metabolismoRESUMO
The rates and patterns of somatic mutation in normal tissues are largely unknown outside of humans1-7. Comparative analyses can shed light on the diversity of mutagenesis across species, and on long-standing hypotheses about the evolution of somatic mutation rates and their role in cancer and ageing. Here we performed whole-genome sequencing of 208 intestinal crypts from 56 individuals to study the landscape of somatic mutation across 16 mammalian species. We found that somatic mutagenesis was dominated by seemingly endogenous mutational processes in all species, including 5-methylcytosine deamination and oxidative damage. With some differences, mutational signatures in other species resembled those described in humans8, although the relative contribution of each signature varied across species. Notably, the somatic mutation rate per year varied greatly across species and exhibited a strong inverse relationship with species lifespan, with no other life-history trait studied showing a comparable association. Despite widely different life histories among the species we examined-including variation of around 30-fold in lifespan and around 40,000-fold in body mass-the somatic mutation burden at the end of lifespan varied only by a factor of around 3. These data unveil common mutational processes across mammals, and suggest that somatic mutation rates are evolutionarily constrained and may be a contributing factor in ageing.
Assuntos
Longevidade , Taxa de Mutação , Animais , Humanos , Longevidade/genética , Mamíferos/genética , Mutagênese/genética , MutaçãoRESUMO
The Tasmanian devil (Sarcophilus harrisii), the largest marsupial carnivore, is endangered due to a transmissible facial cancer spread by direct transfer of living cancer cells through biting. Here we describe the sequencing, assembly, and annotation of the Tasmanian devil genome and whole-genome sequences for two geographically distant subclones of the cancer. Genomic analysis suggests that the cancer first arose from a female Tasmanian devil and that the clone has subsequently genetically diverged during its spread across Tasmania. The devil cancer genome contains more than 17,000 somatic base substitution mutations and bears the imprint of a distinct mutational process. Genotyping of somatic mutations in 104 geographically and temporally distributed Tasmanian devil tumors reveals the pattern of evolution and spread of this parasitic clonal lineage, with evidence of a selective sweep in one geographical area and persistence of parallel lineages in other populations.
Assuntos
Neoplasias Faciais/veterinária , Instabilidade Genômica , Marsupiais/genética , Mutação , Animais , Evolução Clonal , Espécies em Perigo de Extinção , Neoplasias Faciais/epidemiologia , Neoplasias Faciais/genética , Neoplasias Faciais/patologia , Feminino , Estudo de Associação Genômica Ampla , Masculino , Dados de Sequência Molecular , Tasmânia/epidemiologiaRESUMO
Devil facial tumour 1 (DFT1) is a transmissible cancer clone endangering the Tasmanian devil. The expansion of DFT1 across Tasmania has been documented, but little is known of its evolutionary history. We analysed genomes of 648 DFT1 tumours collected throughout the disease range between 2003 and 2018. DFT1 diverged early into five clades, three spreading widely and two failing to persist. One clade has replaced others at several sites, and rates of DFT1 coinfection are high. DFT1 gradually accumulates copy number variants (CNVs), and its telomere lengths are short but constant. Recurrent CNVs reveal genes under positive selection, sites of genome instability, and repeated loss of a small derived chromosome. Cultured DFT1 cell lines have increased CNV frequency and undergo highly reproducible convergent evolution. Overall, DFT1 is a remarkably stable lineage whose genome illustrates how cancer cells adapt to diverse environments and persist in a parasitic niche.
Assuntos
Neoplasias Faciais/veterinária , Marsupiais/genética , Doenças dos Animais/epidemiologia , Doenças dos Animais/genética , Doenças dos Animais/transmissão , Animais , Variações do Número de Cópias de DNA , Evolução Molecular , Neoplasias Faciais/epidemiologia , Neoplasias Faciais/genética , Feminino , Instabilidade Genômica , Masculino , Filogenia , Tasmânia/epidemiologia , Encurtamento do Telômero/genética , Células Tumorais CultivadasRESUMO
Transmissible cancers are infectious malignant cell clones that spread among individuals through transfer of living cancer cells. Several such clones have been identified in various species of marine bivalve molluscs, including mussels, clams and cockles. These parasitic cell lineages cause a leukaemia-like disease called disseminated neoplasia, and are presumed to pass between hosts by ingestion of water-borne cancer cells during filter feeding. Although occasional cases of transmissible cancer had previously been identified in mussels of the genus Mytilus in Europe, the number of distinct clones affecting these animals, and their prevalence, was unknown. In this issue of Molecular Ecology, Hammel et al. (2021) present findings from a large-scale screen for transmissible cancer across 5907 European Mytilus mussels. Using a genotyping approach, Hammel et al. searched for signal of genetic chimerism, which can arise due to infection by transmissible cancer cells. The screen detected a previously identified globally distributed mussel transmissible cancer at very low prevalence, and found no evidence of additional contagious clones. A parallel histological screen additionally revealed low prevalence of a nontransmissible form of disseminated neoplasia. By quantifying the burden of disseminated neoplasia in European mussel populations, this study provides strong foundations for future work investigating the origins, evolution and impacts of transmissible cancers in mussels.
Assuntos
Mytilus , Neoplasias , Animais , Europa (Continente) , Humanos , Mytilus/genéticaRESUMO
Devil facial tumour disease (DFTD) comprises two genetically distinct transmissible cancers (DFT1 and DFT2) endangering the survival of the Tasmanian devil (Sarcophilus harrisii) in the wild. DFT1 first arose from a cell of the Schwann cell lineage; however, the tissue-of-origin of the recently discovered DFT2 cancer is unknown. In this study, we compared the transcriptome and proteome of DFT2 tumours to DFT1 and normal Tasmanian devil tissues to determine the tissue-of-origin of the DFT2 cancer. Our findings demonstrate that DFT2 expresses a range of Schwann cell markers and exhibits expression patterns consistent with a similar origin to the DFT1 cancer. Furthermore, DFT2 cells express genes associated with the repair response to peripheral nerve damage. These findings suggest that devils may be predisposed to transmissible cancers of Schwann cell origin. The combined effect of factors such as frequent nerve damage from biting, Schwann cell plasticity and low genetic diversity may allow these cancers to develop on rare occasions. The emergence of two independent transmissible cancers from the same tissue in the Tasmanian devil presents an unprecedented opportunity to gain insight into cancer development, evolution and immune evasion in mammalian species.
Assuntos
Biomarcadores Tumorais/metabolismo , Neoplasias Faciais/veterinária , Marsupiais/fisiologia , Proteoma/análise , Células de Schwann/patologia , Transcriptoma , Animais , Biomarcadores Tumorais/genética , Neoplasias Faciais/genética , Neoplasias Faciais/metabolismo , Neoplasias Faciais/patologia , Humanos , Células de Schwann/metabolismoRESUMO
Motivation: The recent technological advances in genome sequencing techniques have resulted in an exponential increase in the number of sequenced human and non-human genomes. The ever increasing number of assemblies generated by novel de novo pipelines and strategies demands the development of new software to evaluate assembly quality and completeness. One way to determine the completeness of an assembly is by detecting its Presence-Absence variations (PAV) with respect to a reference, where PAVs between two assemblies are defined as the sequences present in one assembly but entirely missing in the other one. Beyond assembly error or technology bias, PAVs can also reveal real genome polymorphism, consequence of species or individual evolution, or horizontal transfer from viruses and bacteria. Results: We present scanPAV, a pipeline for pairwise assembly comparison to identify and extract sequences present in one assembly but not the other. In this note, we use the GRCh38 reference assembly to assess the completeness of six human genome assemblies from various assembly strategies and sequencing technologies including Illumina short reads, 10× genomics linked-reads, PacBio and Oxford Nanopore long reads, and Bionano optical maps. We also discuss the PAV polymorphism of seven Tasmanian devil whole genome assemblies of normal animal tissues and devil facial tumour 1 (DFT1) and 2 (DFT2) samples, and the identification of bacterial sequences as contamination in some of the tumorous assemblies. Availability and implementation: The pipeline is available under the MIT License at https://github.com/wtsi-hpag/scanPAV. Supplementary information: Supplementary data are available at Bioinformatics online.
Assuntos
Genoma , Animais , Mapeamento Cromossômico , Genômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Análise de Sequência de DNA/métodos , SoftwareRESUMO
Clonally transmissible cancers are somatic cell lineages that are spread between individuals via the transfer of living cancer cells. There are only three known naturally occurring transmissible cancers, and these affect dogs, soft-shell clams, and Tasmanian devils, respectively. The Tasmanian devil transmissible facial cancer was first observed in 1996, and is threatening its host species with extinction. Until now, this disease has been consistently associated with a single aneuploid cancer cell lineage that we refer to as DFT1. Here we describe a second transmissible cancer, DFT2, in five devils located in southern Tasmania in 2014 and 2015. DFT2 causes facial tumors that are grossly indistinguishable but histologically distinct from those caused by DFT1. DFT2 bears no detectable cytogenetic similarity to DFT1 and carries a Y chromosome, which contrasts with the female origin of DFT1. DFT2 shows different alleles to both its hosts and DFT1 at microsatellite, structural variant, and major histocompatibility complex (MHC) loci, confirming that it is a second cancer that can be transmitted between devils as an allogeneic, MHC-discordant graft. These findings indicate that Tasmanian devils have spawned at least two distinct transmissible cancer lineages and suggest that transmissible cancers may arise more frequently in nature than previously considered. The discovery of DFT2 presents important challenges for the conservation of Tasmanian devils and raises the possibility that this species is particularly prone to the emergence of transmissible cancers. More generally, our findings highlight the potential for cancer cells to depart from their hosts and become dangerous transmissible pathogens.
Assuntos
Marsupiais/fisiologia , Neoplasias/veterinária , Alelos , Animais , Quebra Cromossômica , Análise Citogenética , Éxons/genética , Genoma , Geografia , Haplótipos/genética , Cariotipagem , Repetições de Microssatélites/genética , Dados de Sequência Molecular , Neoplasias/genética , Neoplasias/patologia , Polimorfismo de Nucleotídeo Único/genética , Tasmânia , Cromossomo X/genéticaRESUMO
Tasmanian devil facial tumour disease (DFTD) is a clonally transmissible cancer threatening the Tasmanian devil (Sarcophilus harrisii) with extinction. Live cancer cells are the infectious agent, transmitted to new hosts when individuals bite each other. Over the 18 years since DFTD was first observed, distinct genetic and karyotypic sublineages have evolved. In this longitudinal study, we investigate the associations between tumour karyotype, epidemic patterns and host demographic response to the disease. Reduced host population effects and low DFTD infection rates were associated with high prevalence of tetraploid tumours. Subsequent replacement by a diploid variant of DFTD coincided with a rapid increase in disease prevalence, population decline and reduced mean age of the population. Our results suggest a role for tumour genetics in DFTD transmission dynamics and epidemic outcome. Future research, for this and other highly pathogenic emerging infectious diseases, should focus on understanding the evolution of host and pathogen genotypes, their effects on susceptibility and tolerance to infection, and their implications for designing novel genetic management strategies. This study provides evidence for a rapid localized lineage replacement occurring within a transmissible cancer epidemic and highlights the possibility that distinct DFTD genetic lineages may harbour traits that influence pathogen fitness.
Assuntos
Neoplasias Faciais/genética , Neoplasias Faciais/veterinária , Complexo Principal de Histocompatibilidade/genética , Marsupiais/genética , Ploidias , Distribuição por Idade , Animais , Mordeduras e Picadas/epidemiologia , Evolução Clonal , Neoplasias Faciais/epidemiologia , Cariótipo , Estudos Longitudinais , Prevalência , Tasmânia/epidemiologiaRESUMO
Devil facial tumour disease (DFTD) is a fatal, transmissible malignancy that threatens the world's largest marsupial carnivore, the Tasmanian devil, with extinction. First recognised in 1996, DFTD has had a catastrophic effect on wild devil numbers, and intense research efforts to understand and contain the disease have since demonstrated that the tumour is a clonal cell line transmitted by allograft. We used chromosome painting and gene mapping to deconstruct the DFTD karyotype and determine the chromosome and gene rearrangements involved in carcinogenesis. Chromosome painting on three different DFTD tumour strains determined the origins of marker chromosomes and provided a general overview of the rearrangement in DFTD karyotypes. Mapping of 105 BAC clones by fluorescence in situ hybridisation provided a finer level of resolution of genome rearrangements in DFTD strains. Our findings demonstrate that only limited regions of the genome, mainly chromosomes 1 and X, are rearranged in DFTD. Regions rearranged in DFTD are also highly rearranged between different marsupials. Differences between strains are limited, reflecting the unusually stable nature of DFTD. Finally, our detailed maps of both the devil and tumour karyotypes provide a physical framework for future genomic investigations into DFTD.
Assuntos
Mapeamento Cromossômico , Neoplasias Faciais/veterinária , Genoma , Marsupiais/genética , Doenças dos Animais/genética , Doenças dos Animais/transmissão , Animais , Coloração Cromossômica , Células Clonais , Neoplasias Faciais/genética , Rearranjo Gênico , Cariotipagem , Transplante de Neoplasias , Especificidade da EspécieRESUMO
Pseudogenes populate the mammalian genome as remnants of artefactual incorporation of coding messenger RNAs into transposon pathways. Here we show that a subset of pseudogenes generates endogenous small interfering RNAs (endo-siRNAs) in mouse oocytes. These endo-siRNAs are often processed from double-stranded RNAs formed by hybridization of spliced transcripts from protein-coding genes to antisense transcripts from homologous pseudogenes. An inverted repeat pseudogene can also generate abundant small RNAs directly. A second class of endo-siRNAs may enforce repression of mobile genetic elements, acting together with Piwi-interacting RNAs. Loss of Dicer, a protein integral to small RNA production, increases expression of endo-siRNA targets, demonstrating their regulatory activity. Our findings indicate a function for pseudogenes in regulating gene expression by means of the RNA interference pathway and may, in part, explain the evolutionary pressure to conserve argonaute-mediated catalysis in mammals.
Assuntos
Oócitos/metabolismo , Pseudogenes/genética , Interferência de RNA , RNA Interferente Pequeno/genética , Animais , Biologia Computacional , Elementos de DNA Transponíveis/genética , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Biblioteca Gênica , Camundongos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ribonuclease III/deficiência , Ribonuclease III/genética , Ribonuclease III/metabolismoRESUMO
BACKGROUND: The canine transmissible venereal tumour (CTVT) is a contagious cancer that is naturally transmitted between dogs by the allogeneic transfer of living cancer cells during coitus. CTVT first arose several thousand years ago and has been reported in dog populations worldwide; however, its precise distribution patterns and prevalence remain unclear. RESULTS: We analysed historical literature and obtained CTVT prevalence information from 645 veterinarians and animal health workers in 109 countries in order to estimate CTVT's former and current global distribution and prevalence. This analysis confirmed that CTVT is endemic in at least 90 countries worldwide across all inhabited continents. CTVT is estimated to be present at a prevalence of one percent or more in dogs in at least 13 countries in South and Central America as well as in at least 11 countries in Africa and 8 countries in Asia. In the United States and Australia, CTVT was reported to be endemic only in remote indigenous communities. Comparison of current and historical reports of CTVT indicated that its prevalence has declined in Northern Europe, possibly due to changes in dog control laws during the nineteenth and twentieth centuries. Analysis of factors influencing CTVT prevalence showed that presence of free-roaming dogs was associated with increased CTVT prevalence, while dog spaying and neutering were associated with reduced CTVT prevalence. Our analysis indicated no gender bias for CTVT and we found no evidence that animals with CTVT frequently harbour concurrent infectious diseases. Vincristine was widely reported to be the most effective therapy for CTVT. CONCLUSIONS: Our results provide a survey of the current global distribution of CTVT, confirming that CTVT is endemic in at least 90 countries worldwide. Additionally, our analysis highlights factors that continue to modify CTVT's prevalence around the world and implicates free-roaming dogs as a reservoir for the disease. Our analysis also documents the disappearance of the disease from the United Kingdom during the twentieth century, which appears to have been an unintentional result of the introduction of dog control policies.
Assuntos
Doenças do Cão/epidemiologia , Saúde Global , Tumores Venéreos Veterinários/epidemiologia , Animais , Antineoplásicos/uso terapêutico , Doenças do Cão/prevenção & controle , Doenças do Cão/terapia , Cães , Feminino , Masculino , Prevalência , Fatores de Risco , Tumores Venéreos Veterinários/prevenção & controle , Tumores Venéreos Veterinários/terapiaRESUMO
Tasmanian devils are endangered by a transmissible cancer known as Tasmanian devil facial tumour 1 (DFT1). A 2020 study by Patton et al. (Science 370, eabb9772 (doi:10.1126/science.abb9772)) used genome data from DFT1 tumours to produce a dated phylogenetic tree for this transmissible cancer lineage, and thence, using phylodynamics models, to estimate its epidemiological parameters and predict its future trajectory. It concluded that the effective reproduction number for DFT1 had declined to a value of one, and that the disease had shifted from emergence to endemism. We show that the study is based on erroneous mutation calls and flawed methodology, and that its conclusions cannot be substantiated.
RESUMO
Micro-RNAs (miRNAs) have been recognized as critical regulators of gene expression, and deregulation of miRNA expression has been implicated in a wide spectrum of diseases. To provide a framework for the role of miRNAs in B-cell development and malignancy, we deep-sequenced miRNAs from B1 cells and 10 developmental stages that can be identified within the mouse B2 B-cell lineage. The expression profiles of the 232 known miRNAs that are expressed during B-cell development display stage-specific induction patterns, yet hierarchical clustering analysis showed relationships that are in full agreement with the model of the B2 B-cell developmental pathway. Analysis of exemplary miRNA expression profiles (miR-150, miR-146a, miR-155, miR-181) confirmed that our data are in agreement with previous results. The high resolution of the expression data allowed for the identification of the sequential expression of oncomir-1/miR-17-92 and its paralogs miR-106a-363 and miR-106b-25 in subsequent developmental stages in the BM. Further, we have identified and validated 45 novel miRNAs and 6 novel miRNA candidates expressed in developing B cells.
Assuntos
Subpopulações de Linfócitos B/citologia , Subpopulações de Linfócitos B/metabolismo , Linhagem da Célula/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Animais , Subpopulações de Linfócitos B/classificação , Diferenciação Celular/genética , Transformação Celular Neoplásica/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Camundongos , Camundongos Endogâmicos C57BL , RNA não Traduzido/genética , RNA não Traduzido/metabolismoRESUMO
To address the biological function of RNA interference (RNAi)-related pathways in mammals, we disrupted the gene Dicer1 in mice. Loss of Dicer1 lead to lethality early in development, with Dicer1-null embryos depleted of stem cells. Coupled with our inability to generate viable Dicer1-null embryonic stem (ES) cells, this suggests a role for Dicer, and, by implication, the RNAi machinery, in maintaining the stem cell population during early mouse development.
Assuntos
Desenvolvimento Embrionário e Fetal/fisiologia , Endorribonucleases/fisiologia , RNA Helicases/fisiologia , Sequência de Aminoácidos , Animais , RNA Helicases DEAD-box , Endorribonucleases/genética , Camundongos , Camundongos Knockout , Dados de Sequência Molecular , RNA Helicases/genética , Interferência de RNA , Ribonuclease III , Células-Tronco/citologiaRESUMO
Cancers occur across species. Understanding what is consistent and varies across species can provide new insights into cancer initiation and evolution, with significant implications for animal welfare and wildlife conservation. We build a pan-species cancer digital pathology atlas (panspecies.ai) and conduct a pan-species study of computational comparative pathology using a supervised convolutional neural network algorithm trained on human samples. The artificial intelligence algorithm achieves high accuracy in measuring immune response through single-cell classification for two transmissible cancers (canine transmissible venereal tumour, 0.94; Tasmanian devil facial tumour disease, 0.88). In 18 other vertebrate species (mammalia = 11, reptilia = 4, aves = 2, and amphibia = 1), accuracy (range 0.57-0.94) is influenced by cell morphological similarity preserved across different taxonomic groups, tumour sites, and variations in the immune compartment. Furthermore, a spatial immune score based on artificial intelligence and spatial statistics is associated with prognosis in canine melanoma and prostate tumours. A metric, named morphospace overlap, is developed to guide veterinary pathologists towards rational deployment of this technology on new samples. This study provides the foundation and guidelines for transferring artificial intelligence technologies to veterinary pathology based on understanding of morphological conservation, which could vastly accelerate developments in veterinary medicine and comparative oncology.
Assuntos
Animais Selvagens , Neoplasias da Próstata , Masculino , Animais , Humanos , Cães , Inteligência Artificial , Redes Neurais de Computação , Pan troglodytesRESUMO
Tasmanian devils have spawned two transmissible cancer lineages, named devil facial tumor 1 (DFT1) and devil facial tumor 2 (DFT2). We investigated the genetic diversity and evolution of these clones by analyzing 78 DFT1 and 41 DFT2 genomes relative to a newly assembled, chromosome-level reference. Time-resolved phylogenetic trees reveal that DFT1 first emerged in 1986 (1982 to 1989) and DFT2 in 2011 (2009 to 2012). Subclone analysis documents transmission of heterogeneous cell populations. DFT2 has faster mutation rates than DFT1 across all variant classes, including substitutions, indels, rearrangements, transposable element insertions, and copy number alterations, and we identify a hypermutated DFT1 lineage with defective DNA mismatch repair. Several loci show plausible evidence of positive selection in DFT1 or DFT2, including loss of chromosome Y and inactivation of MGA, but none are common to both cancers. This study reveals the parallel long-term evolution of two transmissible cancers inhabiting a common niche in Tasmanian devils.
Assuntos
Evolução Molecular , Neoplasias Faciais , Marsupiais , Seleção Genética , Animais , Neoplasias Faciais/classificação , Neoplasias Faciais/genética , Neoplasias Faciais/veterinária , Genoma , Marsupiais/genética , FilogeniaRESUMO
BACKGROUND: The genome of the carnivorous marsupial, the Tasmanian devil (Sarcophilus harrisii, Order: Dasyuromorphia), was sequenced in the hopes of finding a cure for or gaining a better understanding of the contagious devil facial tumor disease that is threatening the species' survival. To better understand the Tasmanian devil genome, we screened it for transposable elements and investigated the dynamics of short interspersed element (SINE) retroposons. RESULTS: The temporal history of Tasmanian devil SINEs, elucidated using a transposition in transposition analysis, indicates that WSINE1, a CORE-SINE present in around 200,000 copies, is the most recently active element. Moreover, we discovered a new subtype of WSINE1 (WSINE1b) that comprises at least 90% of all Tasmanian devil WSINE1s. The frequencies of WSINE1 subtypes differ in the genomes of two of the other Australian marsupial orders. A co-segregation analysis indicated that at least 66 subfamilies of WSINE1 evolved during the evolution of Dasyuromorphia. Using a substitution rate derived from WSINE1 insertions, the ages of the subfamilies were estimated and correlated with a newly established phylogeny of Dasyuromorphia. Phylogenetic analyses and divergence time estimates of mitochondrial genome data indicate a rapid radiation of the Tasmanian devil and the closest relative the quolls (Dasyurus) around 14 million years ago. CONCLUSIONS: The radiation and abundance of CORE-SINEs in marsupial genomes indicates that they may be a major player in the evolution of marsupials. It is evident that the early phases of evolution of the carnivorous marsupial order Dasyuromorphia was characterized by a burst of SINE activity. A correlation between a speciation event and a major burst of retroposon activity is for the first time shown in a marsupial genome.