Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biofactors ; 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39350641

RESUMO

Indoor air pollution is a recognized emerging threat, claiming millions of lives annually. People are constantly exposed to ambient and indoor air pollution. The latest research shows that people in developed countries spend up to 90% of their time indoors and almost 70% at home. Although impaired IAQ represents a significant health risk, it affects people differently, and specific populations are more vulnerable: children, the elderly, and people with respiratory illnesses are more sensitive to these environmental risks. Despite rather extensive research on IAQ, most of the current understanding about the subject, which includes pollution sources, indoor-outdoor relationships, and ventilation/filtration, is still quite limited, mainly because air quality monitoring in the EU is primarily focused on ambient air quality and regulatory requirements are lacking for indoor environments. Therefore, the EDIAQI project aims to improve guidelines and awareness for advancing the IAQ in Europe and beyond by allowing user-friendly access to information about indoor air pollution exposures, sources, and related risk factors. The solution proposed with EDIAQI consists of conducting a characterization of sources and routes of exposure and dispersion of chemical, biological, and emerging indoor air pollution in multiple cities in the EU. The project will deploy cost-effective/user-friendly monitoring solutions to create new knowledge on sources, exposure routes, and indoor multipollutant body burdens. The EDIAQI project brings together 18 organizations from 11 different European countries that provide interdisciplinary skills and expertise in various fields, including environmental science and technology, medicine, and toxicology, as well as policy design and public engagement.

2.
IEEE Trans Technol Soc ; 3(4): 272-289, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36573115

RESUMO

This article's main contributions are twofold: 1) to demonstrate how to apply the general European Union's High-Level Expert Group's (EU HLEG) guidelines for trustworthy AI in practice for the domain of healthcare and 2) to investigate the research question of what does "trustworthy AI" mean at the time of the COVID-19 pandemic. To this end, we present the results of a post-hoc self-assessment to evaluate the trustworthiness of an AI system for predicting a multiregional score conveying the degree of lung compromise in COVID-19 patients, developed and verified by an interdisciplinary team with members from academia, public hospitals, and industry in time of pandemic. The AI system aims to help radiologists to estimate and communicate the severity of damage in a patient's lung from Chest X-rays. It has been experimentally deployed in the radiology department of the ASST Spedali Civili clinic in Brescia, Italy, since December 2020 during pandemic time. The methodology we have applied for our post-hoc assessment, called Z-Inspection®, uses sociotechnical scenarios to identify ethical, technical, and domain-specific issues in the use of the AI system in the context of the pandemic.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA