Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 135(3): 549-60, 2008 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-18984165

RESUMO

We uncovered a role for ERK signaling in GABA release, long-term potentiation (LTP), and learning, and show that disruption of this mechanism accounts for the learning deficits in a mouse model for learning disabilities in neurofibromatosis type I (NF1). Our results demonstrate that neurofibromin modulates ERK/synapsin I-dependent GABA release, which in turn modulates hippocampal LTP and learning. An Nf1 heterozygous null mutation, which results in enhanced ERK and synapsin I phosphorylation, increased GABA release in the hippocampus, and this was reversed by pharmacological downregulation of ERK signaling. Importantly, the learning deficits associated with the Nf1 mutation were rescued by a subthreshold dose of a GABA(A) antagonist. Accordingly, Cre deletions of Nf1 showed that only those deletions involving inhibitory neurons caused hippocampal inhibition, LTP, and learning abnormalities. Importantly, our results also revealed lasting increases in GABA release triggered by learning, indicating that the mechanisms uncovered here are of general importance for learning.


Assuntos
MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Genes da Neurofibromatose 1 , Aprendizagem , Potenciação de Longa Duração , Neurofibromina 1/metabolismo , Transdução de Sinais , Ácido gama-Aminobutírico/metabolismo , Animais , Feminino , Hipocampo/metabolismo , Deficiências da Aprendizagem/fisiopatologia , Masculino , Camundongos , Neurofibromatose 1/fisiopatologia , Neurofibromina 1/genética , Fosforilação , Sinapsinas/metabolismo
2.
J Biol Chem ; 296: 100508, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33675750

RESUMO

The aggregation of amyloidogenic polypeptides is strongly linked to several neurodegenerative disorders, including Alzheimer's and Parkinson's diseases. Conformational antibodies that selectively recognize protein aggregates are leading therapeutic agents for selectively neutralizing toxic aggregates, diagnostic and imaging agents for detecting disease, and biomedical reagents for elucidating disease mechanisms. Despite their importance, it is challenging to generate high-quality conformational antibodies in a systematic and site-specific manner due to the properties of protein aggregates (hydrophobic, multivalent, and heterogeneous) and limitations of immunization (uncontrolled antigen presentation and immunodominant epitopes). Toward addressing these challenges, we have developed a systematic directed evolution procedure for affinity maturing antibodies against Alzheimer's Aß fibrils and selecting variants with strict conformational and sequence specificity. We first designed a library based on a lead conformational antibody by sampling combinations of amino acids in the antigen-binding site predicted to mediate high antibody specificity. Next, we displayed this library on the surface of yeast, sorted it against Aß42 aggregates, and identified promising clones using deep sequencing. The resulting antibodies displayed similar or higher affinities than clinical-stage Aß antibodies (aducanumab and crenezumab). Moreover, the affinity-matured antibodies retained high conformational specificity for Aß aggregates, as observed for aducanumab and unlike crenezumab. Notably, the affinity-maturated antibodies displayed extremely low levels of nonspecific interactions, as observed for crenezumab and unlike aducanumab. We expect that our systematic methods for generating antibodies with unique combinations of desirable properties will improve the generation of high-quality conformational antibodies specific for diverse types of aggregated conformers.


Assuntos
Amiloide/metabolismo , Anticorpos Monoclonais/imunologia , Encéfalo/patologia , Amiloide/antagonistas & inibidores , Amiloide/imunologia , Animais , Anticorpos Monoclonais/química , Anticorpos Monoclonais/metabolismo , Sítios de Ligação de Anticorpos , Encéfalo/imunologia , Estudos de Casos e Controles , Humanos , Camundongos , Modelos Moleculares , Conformação Proteica
3.
Semin Thromb Hemost ; 48(3): 288-300, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34942669

RESUMO

Tissue plasminogen activator's (tPA) fibrinolytic function in the vasculature is well-established. This specific role for tPA in the vasculature, however, contrasts with its pleiotropic activities in the central nervous system. Numerous physiological and pathological functions have been attributed to tPA in the central nervous system, including neurite outgrowth and regeneration; synaptic and spine plasticity; neurovascular coupling; neurodegeneration; microglial activation; and blood-brain barrier permeability. In addition, multiple substrates, both plasminogen-dependent and -independent, have been proposed to be responsible for tPA's action(s) in the central nervous system. This review aims to dissect a subset of these different functions and the different molecular mechanisms attributed to tPA in the context of learning and memory. We start from the original research that identified tPA as an immediate-early gene with a putative role in synaptic plasticity to what is currently known about tPA's role in a learning and memory disorder, Alzheimer's disease. We specifically focus on studies demonstrating tPA's involvement in the clearance of amyloid-ß and neurovascular coupling. In addition, given that tPA has been shown to regulate blood-brain barrier permeability, which is perturbed in Alzheimer's disease, this review also discusses tPA-mediated vascular dysfunction and possible alternative mechanisms of action for tPA in Alzheimer's disease pathology.


Assuntos
Doença de Alzheimer , Ativador de Plasminogênio Tecidual , Doença de Alzheimer/tratamento farmacológico , Humanos , Plasticidade Neuronal
4.
Allergy ; 77(2): 525-539, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34181765

RESUMO

BACKGROUND: Voltage-gated calcium (Cav 1) channels contribute to T-lymphocyte activation. Cav 1.2 and Cav 1.3 channels are expressed in Th2 cells but their respective roles are unknown, which is investigated herein. METHODS: We generated mice deleted for Cav 1.2 in T cells or Cav 1.3 and analyzed TCR-driven signaling. In this line, we developed original fast calcium imaging to measure early elementary calcium events (ECE). We also tested the impact of Cav 1.2 or Cav 1.3 deletion in models of type 2 airway inflammation. Finally, we checked whether the expression of both Cav 1.2 and Cav 1.3 in T cells from asthmatic children correlates with Th2-cytokine expression. RESULTS: We demonstrated non-redundant and synergistic functions of Cav 1.2 and Cav 1.3 in Th2 cells. Indeed, the deficiency of only one channel in Th2 cells triggers TCR-driven hyporesponsiveness with weakened tyrosine phosphorylation profile, a strong decrease in initial ECE and subsequent reduction in the global calcium response. Moreover, Cav 1.3 has a particular role in calcium homeostasis. In accordance with the singular roles of Cav 1.2 and Cav 1.3 in Th2 cells, deficiency in either one of these channels was sufficient to inhibit cardinal features of type 2 airway inflammation. Furthermore, Cav 1.2 and Cav 1.3 must be co-expressed within the same CD4+ T cell to trigger allergic airway inflammation. Accordingly with the concerted roles of Cav 1.2 and Cav 1.3, the expression of both channels by activated CD4+ T cells from asthmatic children was associated with increased Th2-cytokine transcription. CONCLUSIONS: Thus, Cav 1.2 and Cav 1.3 act as a duo, and targeting only one of these channels would be efficient in allergy treatment.


Assuntos
Asma , Canais de Cálcio , Animais , Asma/metabolismo , Cálcio/metabolismo , Canais de Cálcio/metabolismo , Citocinas/metabolismo , Humanos , Inflamação/metabolismo , Camundongos , Receptores de Antígenos de Linfócitos T/metabolismo , Células Th2/metabolismo
5.
Mol Psychiatry ; 25(12): 3164-3177, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32404949

RESUMO

There is a paucity in the development of new mechanistic insights and therapeutic approaches for treating psychiatric disease. One of the major challenges is reflected in the growing consensus that risk for these diseases is not determined by a single gene, but rather is polygenic, arising from the action and interaction of multiple genes. Canonically, experimental models in mice have been designed to ascertain the relative contribution of a single gene to a disease by systematic manipulation (e.g., mutation or deletion) of a known candidate gene. Because these studies have been largely carried out using inbred isogenic mouse strains, in which there is no (or very little) genetic diversity among subjects, it is difficult to identify unique allelic variants, gene modifiers, and epigenetic factors that strongly affect the nature and severity of these diseases. Here, we review various methods that take advantage of existing genetic diversity or that increase genetic variance in mouse models to (1) strengthen conclusions of single-gene function; (2) model diversity among human populations; and (3) dissect complex phenotypes that arise from the actions of multiple genes.


Assuntos
Transtornos Mentais , Alelos , Animais , Transtornos Mentais/genética , Camundongos , Camundongos Endogâmicos , Herança Multifatorial/genética , Fenótipo
6.
Proc Natl Acad Sci U S A ; 115(40): E9489-E9498, 2018 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-30224492

RESUMO

Two classes of peptide-producing neurons in the arcuate nucleus (Arc) of the hypothalamus are known to exert opposing actions on feeding: the anorexigenic neurons that express proopiomelanocortin (POMC) and the orexigenic neurons that express agouti-related protein (AgRP) and neuropeptide Y (NPY). These neurons are thought to arise from a common embryonic progenitor, but our anatomical and functional understanding of the interplay of these two peptidergic systems that contribute to the control of feeding remains incomplete. The present study uses a combination of optogenetic stimulation with viral and transgenic approaches, coupled with neural activity mapping and brain transparency visualization to demonstrate the following: (i) selective activation of Arc POMC neurons inhibits food consumption rapidly in unsated animals; (ii) activation of Arc neurons arising from POMC-expressing progenitors, including POMC and a subset of AgRP neurons, triggers robust feeding behavior, even in the face of satiety signals from POMC neurons; (iii) the opposing effects on food intake are associated with distinct neuronal projection and activation patterns of adult hypothalamic POMC neurons versus Arc neurons derived from POMC-expressing lineages; and (iv) the increased food intake following the activation of orexigenic neurons derived from POMC-expressing progenitors engages an extensive neural network that involves the endogenous opioid system. Together, these findings shed further light on the dynamic balance between two peptidergic systems in the moment-to-moment regulation of feeding behavior.


Assuntos
Proteína Agouti Sinalizadora/biossíntese , Núcleo Arqueado do Hipotálamo/metabolismo , Comportamento Alimentar/fisiologia , Neurônios/metabolismo , Neuropeptídeo Y/biossíntese , Pró-Opiomelanocortina/biossíntese , Transdução de Sinais/fisiologia , Proteína Agouti Sinalizadora/genética , Animais , Núcleo Arqueado do Hipotálamo/citologia , Comportamento Alimentar/psicologia , Camundongos , Camundongos Transgênicos , Neurônios/citologia , Neuropeptídeo Y/genética , Pró-Opiomelanocortina/genética
7.
J Neurosci ; 39(38): 7604-7614, 2019 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-31270158

RESUMO

Dysregulated adult hippocampal neurogenesis occurs in many temporal lobe epilepsy (TLE) models. Most dentate granule cells (DGCs) generated in response to an epileptic insult develop features that promote increased excitability, including ectopic location, persistent hilar basal dendrites (HBDs), and mossy fiber sprouting. However, some appear to integrate normally and even exhibit reduced excitability compared to other DGCs. To examine the relationship between DGC birthdate, morphology, and network integration in a model of TLE, we retrovirally birthdated either early-born [EB; postnatal day (P)7] or adult-born (AB; P60) DGCs. Male rats underwent pilocarpine-induced status epilepticus (SE) or sham treatment at P56. Three to six months after SE or sham treatment, we used whole-cell patch-clamp and fluorescence microscopy to record spontaneous excitatory and inhibitory currents from birthdated DGCs. We found that both AB and EB populations of DGCs recorded from epileptic rats received increased excitatory input compared with age-matched controls. Interestingly, when AB populations were separated into normally integrated (normotopic) and aberrant (ectopic or HBD-containing) subpopulations, only the aberrant populations exhibited a relative increase in excitatory input (amplitude, frequency, and charge transfer). The ratio of excitatory-to-inhibitory input was most dramatically upregulated for ectopically localized DGCs. These data provide definitive physiological evidence that aberrant integration of post-SE, AB DGCs contributes to increased synaptic drive and support the idea that ectopic DGCs serve as putative hub cells to promote seizures.SIGNIFICANCE STATEMENT Adult dentate granule cell (DGC) neurogenesis is altered in rodent models of temporal lobe epilepsy (TLE). Some of the new neurons show abnormal morphology and integration, but whether adult-generated DGCs contribute to the development of epilepsy is controversial. We examined the synaptic inputs of age-defined populations of DGCs using electrophysiological recordings and fluorescent retroviral reporter birthdating. DGCs generated neonatally were compared with those generated in adulthood, and adult-born (AB) neurons with normal versus aberrant morphology or integration were examined. We found that AB, ectopically located DGCs exhibit the most pro-excitatory physiological changes, implicating this population in seizure generation or progression.


Assuntos
Giro Denteado/citologia , Giro Denteado/fisiologia , Epilepsia do Lobo Temporal/fisiopatologia , Neurônios/citologia , Neurônios/fisiologia , Animais , Masculino , Neurogênese/fisiologia , Ratos , Ratos Sprague-Dawley
8.
Neurobiol Dis ; 143: 105016, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32653673

RESUMO

The ubiquitin-binding proteasomal shuttle protein UBQLN2 is implicated in common neurodegenerative disorders due to its accumulation in disease-specific aggregates and, when mutated, directly causes familial frontotemporal dementia/amyotrophic lateral sclerosis (FTD/ALS). Like other proteins linked to FTD/ALS, UBQLN2 undergoes phase separation to form condensates. The relationship of UBQLN2 phase separation and accumulation to neurodegeneration, however, remains uncertain. Employing biochemical, neuropathological and behavioral assays, we studied the impact of overexpressing WT or mutant UBQLN2 in the CNS of transgenic mice. Expression of UBQLN2 harboring a pathogenic mutation (P506T) elicited profound and widespread intraneuronal inclusion formation and aggregation without prominent neurodegenerative or behavioral changes. Both WT and mutant UBQLN2 formed ubiquitin- and P62-positive inclusions in neurons, supporting the view that UBQLN2 is intrinsically prone to phase separate, with the size, shape and frequency of inclusions depending on expression level and the presence or absence of a pathogenic mutation. Overexpression of WT or mutant UBQLN2 resulted in a dose-dependent decrease in levels of a key interacting chaperone, HSP70, as well as dose-dependent profound degeneration of the retina. We conclude that, at least in mice, robust aggregation of a pathogenic form of UBQLN2 is insufficient to cause neuronal loss recapitulating that of human FTD/ALS. Our results nevertheless support the view that altering the normal cellular balance of UBQLN2, whether wild type or mutant protein, has deleterious effects on cells of the CNS and retina that likely reflect perturbations in ubiquitin-dependent protein homeostasis.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Relacionadas à Autofagia/metabolismo , Modelos Animais de Doenças , Degeneração Neural/metabolismo , Doenças Neurodegenerativas/metabolismo , Neurônios/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/patologia , Animais , Proteínas Relacionadas à Autofagia/genética , Demência Frontotemporal/metabolismo , Demência Frontotemporal/patologia , Camundongos , Camundongos Endogâmicos C57BL , Mutação , Degeneração Neural/patologia , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/patologia , Neurônios/patologia , Proteostase/fisiologia
9.
EMBO J ; 35(12): 1330-45, 2016 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-27103070

RESUMO

Agonist-triggered downregulation of ß-adrenergic receptors (ARs) constitutes vital negative feedback to prevent cellular overexcitation. Here, we report a novel downregulation of ß2AR signaling highly specific for Cav1.2. We find that ß2-AR binding to Cav1.2 residues 1923-1942 is required for ß-adrenergic regulation of Cav1.2. Despite the prominence of PKA-mediated phosphorylation of Cav1.2 S1928 within the newly identified ß2AR binding site, its physiological function has so far escaped identification. We show that phosphorylation of S1928 displaces the ß2AR from Cav1.2 upon ß-adrenergic stimulation rendering Cav1.2 refractory for several minutes from further ß-adrenergic stimulation. This effect is lost in S1928A knock-in mice. Although AMPARs are clustered at postsynaptic sites like Cav1.2, ß2AR association with and regulation of AMPARs do not show such dissociation. Accordingly, displacement of the ß2AR from Cav1.2 is a uniquely specific desensitization mechanism of Cav1.2 regulation by highly localized ß2AR/cAMP/PKA/S1928 signaling. The physiological implications of this mechanism are underscored by our finding that LTP induced by prolonged theta tetanus (PTT-LTP) depends on Cav1.2 and its regulation by channel-associated ß2AR.


Assuntos
Canais de Cálcio Tipo L/metabolismo , Processamento de Proteína Pós-Traducional , Receptores Adrenérgicos beta 2/metabolismo , Animais , Camundongos , Fosforilação
10.
Neurobiol Learn Mem ; 173: 107230, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32407963

RESUMO

Over the last two decades there has been significant progress towards understanding the neural substrates that underlie age-related cognitive decline. Although many of the exact molecular and cellular mechanisms have yet to be fully understood, there is consensus that alterations in neuronal calcium homeostasis contribute to age-related deficits in learning and memory. Furthermore, it is thought that the age-related changes in calcium homeostasis are driven, at least in part, by changes in calcium channel expression. In this review, we focus on the role of a specific class of calcium channels: L-type voltage-gated calcium channels (LVGCCs). We provide the reader with a general introduction to voltage-gated calcium channels, followed by a more detailed description of LVGCCs and how they serve to regulate neuronal excitability via the post burst afterhyperpolarization (AHP). We conclude by reviewing studies that link the slow component of the AHP to learning and memory, and discuss how age-related increases in LVGCC expression may underlie cognitive decline by mediating a decrease in neuronal excitability.


Assuntos
Envelhecimento/metabolismo , Encéfalo/metabolismo , Canais de Cálcio Tipo L/metabolismo , Neurônios/metabolismo , Animais , Humanos , Aprendizagem/fisiologia , Potenciais da Membrana/fisiologia , Memória/fisiologia
11.
Ann Neurol ; 84(1): 140-146, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-30080265

RESUMO

Epileptogenic mechanisms in focal cortical dysplasia (FCD) remain elusive, as no animal models faithfully recapitulate FCD seizures, which have distinct electrographic features and a wide range of semiologies. Given that DEPDC5 plays significant roles in focal epilepsies with FCD, we used in utero electroporation with clustered regularly interspaced short palindromic repeats gene deletion to create focal somatic Depdc5 deletion in the rat embryonic brain. Animals developed spontaneous seizures with focal pathological and electroclinical features highly clinically relevant to FCD IIA, paving the way toward understanding its pathogenesis and developing mechanistic-based therapies. Ann Neurol 2018;83:140-146.


Assuntos
Epilepsia/genética , Epilepsia/fisiopatologia , Malformações do Desenvolvimento Cortical do Grupo I/genética , Malformações do Desenvolvimento Cortical do Grupo I/fisiopatologia , Proteínas Repressoras/genética , Deleção de Sequência/genética , Animais , Animais Recém-Nascidos , Encéfalo/citologia , Ondas Encefálicas/genética , Eletroencefalografia , Eletroporação , Embrião de Mamíferos , Epilepsia/patologia , Feminino , Proteínas Ativadoras de GTPase , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Técnicas In Vitro , Imageamento por Ressonância Magnética , Masculino , Malformações do Desenvolvimento Cortical do Grupo I/patologia , Neurônios/fisiologia , Ratos , Proteínas Repressoras/metabolismo , Proteína S6 Ribossômica/metabolismo
12.
J Neurosci ; 37(42): 10038-10051, 2017 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-28899915

RESUMO

Exploring the molecular mechanisms that drive the maturation of oligodendrocyte progenitor cells (OPCs) during the remyelination process is essential to developing new therapeutic tools to intervene in demyelinating diseases such as multiple sclerosis. To determine whether L-type voltage-gated calcium channels (L-VGCCs) are required for OPC development during remyelination, we generated an inducible conditional knock-out mouse in which the L-VGCC isoform Cav1.2 was deleted in NG2-positive OPCs (Cav1.2KO). Using the cuprizone (CPZ) model of demyelination and mice of either sex, we establish that Cav1.2 deletion in OPCs leads to less efficient remyelination of the adult brain. Specifically, Cav1.2KO OPCs mature slower and produce less myelin than control oligodendrocytes during the recovery period after CPZ intoxication. This reduced remyelination was accompanied by an important decline in the number of myelinating oligodendrocytes and in the rate of OPC proliferation. Furthermore, during the remyelination phase of the CPZ model, the corpus callosum of Cav1.2KO animals presented a significant decrease in the percentage of myelinated axons and a substantial increase in the mean g-ratio of myelinated axons compared with controls. In addition, in a mouse line in which the Cav1.2KO OPCs were identified by a Cre reporter, we establish that Cav1.2KO OPCs display a reduced maturational rate through the entire remyelination process. These results suggest that Ca2+ influx mediated by L-VGCCs in oligodendroglial cells is necessary for normal remyelination and is an essential Ca2+ channel for OPC maturation during the remyelination of the adult brain.SIGNIFICANCE STATEMENT Ion channels implicated in oligodendrocyte differentiation and maturation may induce positive signals for myelin recovery. Voltage-gated Ca2+ channels (VGCCs) are important for normal myelination by acting at several critical steps during oligodendrocyte progenitor cell (OPC) development. To determine whether voltage Ca2+ entry is involved in oligodendrocyte differentiation and remyelination, we used a conditional knockout mouse for VGCCs in OPCs. Our results indicate that VGCCs can modulate oligodendrocyte maturation in the demyelinated brain and suggest that voltage-gated Ca2+ influx in OPCs is critical for remyelination. These findings could lead to novel approaches for obtaining a better understanding of the factors that control OPC maturation in order to stimulate this pool of progenitors to replace myelin in demyelinating diseases.


Assuntos
Antígenos/biossíntese , Canais de Cálcio Tipo L/deficiência , Deleção de Genes , Bainha de Mielina/metabolismo , Fibras Nervosas Mielinizadas/metabolismo , Proteoglicanas/biossíntese , Animais , Antígenos/genética , Encéfalo/metabolismo , Encéfalo/patologia , Canais de Cálcio Tipo L/genética , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Bainha de Mielina/genética , Fibras Nervosas Mielinizadas/patologia , Oligodendroglia/metabolismo , Oligodendroglia/patologia , Proteoglicanas/genética
13.
Development ; 142(22): 3879-91, 2015 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-26417041

RESUMO

Neuronal activity, including intrinsic neuronal excitability and synaptic transmission, is an essential regulator of brain development. However, how the intrinsic neuronal excitability of distinct neurons affects their integration into developing circuits remains poorly understood. To investigate this problem, we created several transgenic mouse lines in which intrinsic excitability is suppressed, and the neurons are effectively silenced, in different excitatory neuronal populations of the hippocampus. Here we show that CA1, CA3 and dentate gyrus neurons each have unique responses to suppressed intrinsic excitability during circuit development. Silenced CA1 pyramidal neurons show altered spine development and synaptic transmission after postnatal day 15. By contrast, silenced CA3 pyramidal neurons seem to develop normally. Silenced dentate granule cells develop with input-specific decreases in spine density starting at postnatal day 11; however, a compensatory enhancement of neurotransmitter release onto these neurons maintains normal levels of synaptic activity. The synaptic changes in CA1 and dentate granule neurons are not observed when synaptic transmission, rather than intrinsic excitability, is blocked in these neurons. Thus, our results demonstrate a crucial role for intrinsic neuronal excitability in establishing hippocampal connectivity and reveal that neuronal development in each hippocampal region is distinctly regulated by excitability.


Assuntos
Hipocampo/embriologia , Neurogênese/fisiologia , Neurônios/citologia , Transmissão Sináptica/fisiologia , Análise de Variância , Animais , Região CA1 Hipocampal/citologia , Região CA3 Hipocampal/citologia , Contagem de Células , Dendritos/ultraestrutura , Giro Denteado/citologia , Imuno-Histoquímica , Camundongos , Camundongos Transgênicos , Microscopia Confocal , Neurônios/metabolismo , Células Piramidais/citologia , Células Piramidais/metabolismo
14.
FASEB J ; 31(9): 4179-4186, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28592637

RESUMO

Hippocampus oxidative stress is considered pathogenic in neurodegenerative diseases, such as Alzheimer disease (AD), and in neurodevelopmental disorders, such as Angelman syndrome (AS). Yet clinical benefits of antioxidant treatment for these diseases remain unclear because conventional imaging methods are unable to guide management of therapies in specific hippocampus subfields in vivo that underlie abnormal behavior. Excessive production of paramagnetic free radicals in nonhippocampus brain tissue can be measured in vivo as a greater-than-normal 1/T1 that is quenchable with antioxidant as measured by quench-assisted (Quest) MRI. Here, we further test this approach in phantoms, and we present proof-of-concept data in models of AD-like and AS hippocampus oxidative stress that also exhibit impaired spatial learning and memory. AD-like models showed an abnormal gradient along the CA1 dorsal-ventral axis of excessive free radical production as measured by Quest MRI, and redox-sensitive calcium dysregulation as measured by manganese-enhanced MRI and electrophysiology. In the AS model, abnormally high free radical levels were observed in dorsal and ventral CA1. Quest MRI is a promising in vivo paradigm for bridging brain subfield oxidative stress and behavior in animal models and in human patients to better manage antioxidant therapy in devastating neurodegenerative and neurodevelopmental diseases.-Berkowitz, B. A., Lenning, J., Khetarpal, N., Tran, C., Wu, J. Y., Berri, A. M., Dernay, K., Haacke, E. M., Shafie-Khorassani, F., Podolsky, R. H., Gant, J. C., Maimaiti, S., Thibault, O., Murphy, G. G., Bennett, B. M., Roberts, R. In vivo imaging of prodromal hippocampus CA1 subfield oxidative stress in models of Alzheimer disease and Angelman syndrome.


Assuntos
Doença de Alzheimer/diagnóstico por imagem , Síndrome de Angelman/diagnóstico por imagem , Região CA1 Hipocampal/patologia , Estresse Oxidativo/fisiologia , Sintomas Prodrômicos , Aldeído-Desidrogenase Mitocondrial/genética , Aldeído-Desidrogenase Mitocondrial/metabolismo , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/genética , Peptídeos beta-Amiloides/metabolismo , Síndrome de Angelman/patologia , Animais , Antioxidantes , Cálcio/metabolismo , Radicais Livres , Imageamento por Ressonância Magnética/métodos , Manganês , Memória/fisiologia , Camundongos Knockout , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
15.
Learn Mem ; 24(11): 580-588, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-29038219

RESUMO

L-type voltage-gated calcium channels (LVGCCs) have been implicated in both the formation and the reduction of fear through Pavlovian fear conditioning and extinction. Despite the implication of LVGCCs in fear learning and extinction, studies of the individual LVGCC subtypes, CaV1.2 and CaV1.3, using transgenic mice have failed to find a role of either subtype in fear extinction. This discontinuity between the pharmacological studies of LVGCCs and the studies investigating individual subtype contributions could be due to the limited neuronal deletion pattern of the CaV1.2 conditional knockout mice previously studied to excitatory neurons in the forebrain. To investigate the effects of deletion of CaV1.2 in all neuronal populations, we generated CaV1.2 conditional knockout mice using the synapsin1 promoter to drive Cre recombinase expression. Pan-neuronal deletion of CaV1.2 did not alter basal anxiety or fear learning. However, pan-neuronal deletion of CaV1.2 resulted in a significant deficit in extinction of contextual fear, implicating LVGCCs, specifically CaV1.2, in extinction learning. Further exploration on the effects of deletion of CaV1.2 on inhibitory and excitatory input onto the principle neurons of the lateral amygdala revealed a significant shift in inhibitory/excitatory balance. Together these data illustrate an important role of CaV1.2 in fear extinction and the synaptic regulation of activity within the amygdala.


Assuntos
Tonsila do Cerebelo/citologia , Tonsila do Cerebelo/fisiologia , Canais de Cálcio Tipo L/metabolismo , Extinção Psicológica/fisiologia , Medo/fisiologia , Neurônios/metabolismo , Sinapses/fisiologia , Análise de Variância , Animais , Canais de Cálcio Tipo L/genética , Estimulação Elétrica , Comportamento Exploratório/fisiologia , Técnicas In Vitro , Integrases/genética , Integrases/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Técnicas de Patch-Clamp , Sinapsinas/genética , Sinapsinas/metabolismo , Potenciais Sinápticos/efeitos dos fármacos , Potenciais Sinápticos/genética
16.
J Neurosci ; 36(42): 10853-10869, 2016 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-27798140

RESUMO

To determine whether L-type voltage-operated Ca2+ channels (L-VOCCs) are required for oligodendrocyte progenitor cell (OPC) development, we generated an inducible conditional knock-out mouse in which the L-VOCC isoform Cav1.2 was postnatally deleted in NG2-positive OPCs. A significant hypomyelination was found in the brains of the Cav1.2 conditional knock-out (Cav1.2KO) mice specifically when the Cav1.2 deletion was induced in OPCs during the first 2 postnatal weeks. A decrease in myelin proteins expression was visible in several brain structures, including the corpus callosum, cortex, and striatum, and the corpus callosum of Cav1.2KO animals showed an important decrease in the percentage of myelinated axons and a substantial increase in the mean g-ratio of myelinated axons. The reduced myelination was accompanied by an important decline in the number of myelinating oligodendrocytes and in the rate of OPC proliferation. Furthermore, using a triple transgenic mouse in which all of the Cav1.2KO OPCs were tracked by a Cre reporter, we found that Cav1.2KO OPCs produce less mature oligodendrocytes than control cells. Finally, live-cell imaging in early postnatal brain slices revealed that the migration and proliferation of subventricular zone OPCs is decreased in the Cav1.2KO mice. These results indicate that the L-VOCC isoform Cav1.2 modulates oligodendrocyte development and suggest that Ca2+ influx mediated by L-VOCCs in OPCs is necessary for normal myelination. SIGNIFICANCE STATEMENT: Overall, it is clear that cells in the oligodendrocyte lineage exhibit remarkable plasticity with regard to the expression of Ca2+ channels and that perturbation of Ca2+ homeostasis likely plays an important role in the pathogenesis underlying demyelinating diseases. To determine whether voltage-gated Ca2+ entry is involved in oligodendrocyte maturation and myelination, we used a conditional knock-out mouse for voltage-operated Ca2+ channels in oligodendrocyte progenitor cells. Our results indicate that voltage-operated Ca2+ channels can modulate oligodendrocyte development in the postnatal brain and suggest that voltage-gated Ca2+ influx in oligodendroglial cells is critical for normal myelination. These findings could lead to novel approaches to intervene in neurodegenerative diseases in which myelin is lost or damaged.


Assuntos
Canais de Cálcio Tipo L/genética , Bainha de Mielina/fisiologia , Células-Tronco Neurais/fisiologia , Oligodendroglia/fisiologia , Animais , Animais Recém-Nascidos , Proliferação de Células , Feminino , Deleção de Genes , Masculino , Camundongos , Camundongos Knockout , Proteínas da Mielina/biossíntese , Cultura Primária de Células
17.
Hum Mol Genet ; 24(2): 506-15, 2015 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-25227913

RESUMO

De novo mutations of the voltage-gated sodium channel gene SCN8A have recently been recognized as a cause of epileptic encephalopathy, which is characterized by refractory seizures with developmental delay and cognitive disability. We previously described the heterozygous SCN8A missense mutation p.Asn1768Asp in a child with epileptic encephalopathy that included seizures, ataxia, and sudden unexpected death in epilepsy (SUDEP). The mutation results in increased persistent sodium current and hyperactivity of transfected neurons. We have characterized a knock-in mouse model expressing this dominant gain-of-function mutation to investigate the pathology of the altered channel in vivo. The mutant channel protein is stable in vivo. Heterozygous Scn8a(N1768D/+) mice exhibit seizures and SUDEP, confirming the causality of the de novo mutation in the proband. Using video/EEG analysis, we detect ictal discharges that coincide with convulsive seizures and myoclonic jerks. Prior to seizure onset, heterozygous mutants are not defective in motor learning or fear conditioning, but do exhibit mild impairment of motor coordination and social discrimination. Homozygous mutant mice exhibit earlier seizure onset than heterozygotes and more rapid progression to death. Analysis of the intermediate phenotype of functionally hemizygous Scn8a(N1768D/-) mice indicates that severity is increased by a double dose of mutant protein and reduced by the presence of wild-type protein. Scn8a(N1768D) mutant mice provide a model of epileptic encephalopathy that will be valuable for studying the in vivo effects of hyperactive Nav1.6 and the response to therapeutic interventions.


Assuntos
Síndrome de Brugada/metabolismo , Epilepsia/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.6/metabolismo , Convulsões/metabolismo , Animais , Comportamento , Síndrome de Brugada/genética , Síndrome de Brugada/psicologia , Modelos Animais de Doenças , Epilepsia/genética , Epilepsia/psicologia , Feminino , Técnicas de Introdução de Genes , Humanos , Masculino , Camundongos , Mutação de Sentido Incorreto , Canal de Sódio Disparado por Voltagem NAV1.6/genética , Convulsões/genética , Convulsões/psicologia
18.
Hum Mol Genet ; 24(5): 1211-24, 2015 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-25320121

RESUMO

Polyglutamine diseases, including spinocerebellar ataxia type 3 (SCA3), are caused by CAG repeat expansions that encode abnormally long glutamine repeats in the respective disease proteins. While the mechanisms underlying neurodegeneration remain uncertain, evidence supports a proteotoxic role for the mutant protein dictated in part by the specific genetic and protein context. To further define pathogenic mechanisms in SCA3, we generated a mouse model in which a CAG expansion of 82 repeats was inserted into the murine locus by homologous recombination. SCA3 knockin mice exhibit region-specific aggregate pathology marked by intranuclear accumulation of the mutant Atxn3 protein, abundant nuclear inclusions and, in select brain regions, extranuclear aggregates localized to neuritic processes. Knockin mice also display altered splicing of the disease gene, promoting expression of an alternative isoform in which the intron immediately downstream of the CAG repeat is retained. In an independent mouse model expressing the full human ATXN3 disease gene, expression of this alternatively spliced transcript is also enhanced. These results, together with recent findings in other polyglutamine diseases, suggest that CAG repeat expansions can promote aberrant splicing to produce potentially more aggregate-prone isoforms of the disease proteins. This report of a SCA3 knockin mouse expands the repertoire of existing models of SCA3, and underscores the potential contribution of alternative splicing to disease pathogenesis in SCA3 and other polyglutamine disorders.


Assuntos
Processamento Alternativo , Modelos Animais de Doenças , Doença de Machado-Joseph/genética , Doença de Machado-Joseph/patologia , Proteínas Nucleares/genética , Fatores de Transcrição/genética , Animais , Ataxina-3 , Sequência de Bases , Linhagem Celular , Éxons , Feminino , Fibroblastos/metabolismo , Técnicas de Introdução de Genes , Loci Gênicos , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Dados de Sequência Molecular , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Fatores de Transcrição/metabolismo , Transcrição Gênica , Regulação para Cima
19.
Mol Cell Neurosci ; 75: 14-26, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27297944

RESUMO

Dendritic spines are fine neuronal processes where spatially restricted input can induce activity-dependent changes in one spine, while leaving neighboring spines unmodified. Morphological spine plasticity is critical for synaptic transmission and is thought to underlie processes like learning and memory. Significantly, defects in dendritic spine stability and morphology are common pathogenic features found in several neurodevelopmental and neuropsychiatric disorders. The remodeling of spines relies on proteins that modulate the underlying cytoskeleton, which is primarily composed of filamentous (F)-actin. The Rho-GTPase Rac1 is a major regulator of F-actin and is essential for the development and plasticity of dendrites and spines. However, the key molecules and mechanisms that regulate Rac1-dependent pathways at spines and synapses are not well understood. We have identified the Rac1-GTPase activating protein, α2-chimaerin, as a critical negative regulator of Rac1 in hippocampal neurons. The loss of α2-chimaerin significantly increases the levels of active Rac1 and induces the formation of aberrant polymorphic dendritic spines. Further, disruption of α2-chimaerin signaling simplifies dendritic arbor complexity and increases the presence of dendritic spines that appear poly-innervated. Our data suggests that α2-chimaerin serves as a "brake" to constrain Rac1-dependent signaling to ensure that the mature morphology of spines is maintained in response to network activity.


Assuntos
Quimerina 1/metabolismo , Espinhas Dendríticas/metabolismo , Neurogênese , Citoesqueleto de Actina/metabolismo , Animais , Células Cultivadas , Quimerina 1/genética , Espinhas Dendríticas/fisiologia , Hipocampo/citologia , Hipocampo/metabolismo , Potenciação de Longa Duração , Camundongos , Camundongos Endogâmicos C57BL , Neuropeptídeos/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo
20.
J Neurosci ; 35(15): 6165-78, 2015 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-25878288

RESUMO

NMDA receptors (NMDARs) play an essential role in some forms of synaptic plasticity, learning, and memory. Therefore, these receptors are highly regulated with respect to their localization, activation, and abundance both within and on the surface of mammalian neurons. Fundamental questions remain, however, regarding how this complex regulation is achieved. Using cell-based models and F-box Only Protein 2 (Fbxo2) knock-out mice, we found that the ubiquitin ligase substrate adaptor protein Fbxo2, previously reported to facilitate the degradation of the NMDAR subunit GluN1 in vitro, also functions to regulate GluN1 and GluN2A subunit levels in the adult mouse brain. In contrast, GluN2B subunit levels are not affected by the loss of Fbxo2. The loss of Fbxo2 results in greater surface localization of GluN1 and GluN2A, together with increases in the synaptic markers PSD-95 and Vglut1. These synaptic changes do not manifest as neurophysiological differences or alterations in dendritic spine density in Fbxo2 knock-out mice, but result instead in increased axo-dendritic shaft synapses. Together, these findings suggest that Fbxo2 controls the abundance and localization of specific NMDAR subunits in the brain and may influence synapse formation and maintenance.


Assuntos
Encéfalo/metabolismo , Proteínas F-Box/metabolismo , Regulação da Expressão Gênica/genética , Proteínas do Tecido Nervoso/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Sinapses/metabolismo , 6-Ciano-7-nitroquinoxalina-2,3-diona/farmacologia , Animais , Encéfalo/citologia , Células Cultivadas , Antagonistas de Aminoácidos Excitatórios/farmacologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/genética , Proteínas F-Box/genética , Células HEK293 , Humanos , Técnicas In Vitro , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/citologia , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Transporte Proteico/genética , Sinapses/efeitos dos fármacos , Sinapses/ultraestrutura , Sinaptossomos/metabolismo , Sinaptossomos/ultraestrutura , Proteína Vesicular 1 de Transporte de Glutamato/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA