Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Nature ; 519(7541): 102-5, 2015 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-25686603

RESUMO

The BCR-ABL1 fusion gene is a driver oncogene in chronic myeloid leukaemia and 30-50% of cases of adult acute lymphoblastic leukaemia. Introduction of ABL1 kinase inhibitors (for example, imatinib) has markedly improved patient survival, but acquired drug resistance remains a challenge. Point mutations in the ABL1 kinase domain weaken inhibitor binding and represent the most common clinical resistance mechanism. The BCR-ABL1 kinase domain gatekeeper mutation Thr315Ile (T315I) confers resistance to all approved ABL1 inhibitors except ponatinib, which has toxicity limitations. Here we combine comprehensive drug sensitivity and resistance profiling of patient cells ex vivo with structural analysis to establish the VEGFR tyrosine kinase inhibitor axitinib as a selective and effective inhibitor for T315I-mutant BCR-ABL1-driven leukaemia. Axitinib potently inhibited BCR-ABL1(T315I), at both biochemical and cellular levels, by binding to the active form of ABL1(T315I) in a mutation-selective binding mode. These findings suggest that the T315I mutation shifts the conformational equilibrium of the kinase in favour of an active (DFG-in) A-loop conformation, which has more optimal binding interactions with axitinib. Treatment of a T315I chronic myeloid leukaemia patient with axitinib resulted in a rapid reduction of T315I-positive cells from bone marrow. Taken together, our findings demonstrate an unexpected opportunity to repurpose axitinib, an anti-angiogenic drug approved for renal cancer, as an inhibitor for ABL1 gatekeeper mutant drug-resistant leukaemia patients. This study shows that wild-type proteins do not always sample the conformations available to disease-relevant mutant proteins and that comprehensive drug testing of patient-derived cells can identify unpredictable, clinically significant drug-repositioning opportunities.


Assuntos
Proteínas de Fusão bcr-abl/antagonistas & inibidores , Proteínas de Fusão bcr-abl/química , Imidazóis/química , Imidazóis/farmacologia , Indazóis/química , Indazóis/farmacologia , Inibidores da Angiogênese/química , Inibidores da Angiogênese/farmacologia , Inibidores da Angiogênese/uso terapêutico , Axitinibe , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Cristalização , Cristalografia por Raios X , Reposicionamento de Medicamentos , Resistencia a Medicamentos Antineoplásicos/genética , Ensaios de Seleção de Medicamentos Antitumorais , Proteínas de Fusão bcr-abl/genética , Proteínas de Fusão bcr-abl/metabolismo , Humanos , Imidazóis/uso terapêutico , Indazóis/uso terapêutico , Neoplasias Renais/tratamento farmacológico , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/metabolismo , Modelos Moleculares , Conformação Molecular , Fosforilação/efeitos dos fármacos , Ligação Proteica , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Proto-Oncogênicas c-abl/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-abl/química , Proteínas Proto-Oncogênicas c-abl/genética , Proteínas Proto-Oncogênicas c-abl/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/química , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
2.
J Biol Chem ; 292(38): 15705-15716, 2017 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-28724631

RESUMO

The receptor tyrosine kinase family consisting of Tyro3, Axl, and Mer (TAM) is one of the most recently identified receptor tyrosine kinase families. TAM receptors are up-regulated postnatally and maintained at high levels in adults. They all play an important role in immunity, but Axl has also been implicated in cancer and therefore is a target in the discovery and development of novel therapeutics. However, of the three members of the TAM family, the Axl kinase domain is the only one that has so far eluded structure determination. To this end, using differential scanning fluorimetry and hydrogen-deuterium exchange mass spectrometry, we show here that a lower stability and greater dynamic nature of the Axl kinase domain may account for its poor crystallizability. We present the first structural characterization of the Axl kinase domain in complex with a small-molecule macrocyclic inhibitor. The Axl crystal structure revealed two distinct conformational states of the enzyme, providing a first glimpse of what an active TAM receptor kinase may look like and suggesting a potential role for the juxtamembrane region in enzyme activity. We noted that the ATP/inhibitor-binding sites of the TAM members closely resemble each other, posing a challenge for the design of a selective inhibitor. We propose that the differences in the conformational dynamics among the TAM family members could potentially be exploited to achieve inhibitor selectivity for targeted receptors.


Assuntos
Compostos Macrocíclicos/metabolismo , Inibidores de Proteínas Quinases/metabolismo , Proteínas Proto-Oncogênicas/química , Proteínas Proto-Oncogênicas/metabolismo , Receptores Proteína Tirosina Quinases/química , Receptores Proteína Tirosina Quinases/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Membrana Celular/enzimologia , Desenho de Fármacos , Estabilidade Enzimática , Humanos , Ligantes , Compostos Macrocíclicos/farmacologia , Modelos Moleculares , Fosforilação , Ligação Proteica , Domínios Proteicos , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Receptores Proteína Tirosina Quinases/antagonistas & inibidores , Receptor Tirosina Quinase Axl
3.
Proc Natl Acad Sci U S A ; 111(1): 173-8, 2014 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-24347635

RESUMO

Covalent inhibition is a reemerging paradigm in kinase drug design, but the roles of inhibitor binding affinity and chemical reactivity in overall potency are not well-understood. To characterize the underlying molecular processes at a microscopic level and determine the appropriate kinetic constants, specialized experimental design and advanced numerical integration of differential equations are developed. Previously uncharacterized investigational covalent drugs reported here are shown to be extremely effective epidermal growth factor receptor (EGFR) inhibitors (kinact/Ki in the range 10(5)-10(7) M(-1)s(-1)), despite their low specific reactivity (kinact ≤ 2.1 × 10(-3) s(-1)), which is compensated for by high binding affinities (Ki < 1 nM). For inhibitors relying on reactivity to achieve potency, noncovalent enzyme-inhibitor complex partitioning between inhibitor dissociation and bond formation is central. Interestingly, reversible binding affinity of EGFR covalent inhibitors is highly correlated with antitumor cell potency. Furthermore, cellular potency for a subset of covalent inhibitors can be accounted for solely through reversible interactions. One reversible interaction is between EGFR-Cys797 nucleophile and the inhibitor's reactive group, which may also contribute to drug resistance. Because covalent inhibitors target a cysteine residue, the effects of its oxidation on enzyme catalysis and inhibitor pharmacology are characterized. Oxidation of the EGFR cysteine nucleophile does not alter catalysis but has widely varied effects on inhibitor potency depending on the EGFR context (e.g., oncogenic mutations), type of oxidation (sulfinylation or glutathiolation), and inhibitor architecture. These methods, parameters, and insights provide a rational framework for assessing and designing effective covalent inhibitors.


Assuntos
Resistência a Medicamentos , Inibidores Enzimáticos/síntese química , Receptores ErbB/antagonistas & inibidores , Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Catálise , Linhagem Celular Tumoral , Química Farmacêutica , Cisteína/química , Desenho de Fármacos , Inibidores Enzimáticos/farmacologia , Ensaio de Imunoadsorção Enzimática , Receptores ErbB/química , Humanos , Concentração Inibidora 50 , Espectrometria de Massas , Oxigênio/química , Fosforilação , Ligação Proteica , Conformação Proteica , Quinazolinas/química , Transdução de Sinais
4.
Bioorg Med Chem Lett ; 26(8): 1861-8, 2016 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-26968253

RESUMO

First generation epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (gefitinib and erlotinib) demonstrate excellent clinical efficacy for NSCLC patients carrying EGFR oncogenic mutations (L858R, del exon 19 deletions between amino acids 746 and 750). Invariable, drug resistance occurs with around 60% of it driven by the EGFR-T790M gatekeeper mutation. To counter the T790M-dependent resistance, third generation covalent EGFR inhibitors have been developed with high potency toward T790M containing mutants and selectivity over WT EGFR. This review provides an overview of the third generation drugs currently in clinical trials and also encompasses novel methodologies developed to discover third generation covalent EGFR drugs.


Assuntos
Antineoplásicos/farmacologia , Receptores ErbB/antagonistas & inibidores , Neoplasias/tratamento farmacológico , Neoplasias/enzimologia , Inibidores de Proteínas Quinases/farmacologia , Animais , Antineoplásicos/química , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Receptores ErbB/genética , Receptores ErbB/metabolismo , Humanos , Inibidores de Proteínas Quinases/química
5.
Anal Biochem ; 484: 82-90, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-25433146

RESUMO

This article describes an integrated rate equation for the time course of covalent enzyme inhibition under the conditions where the substrate concentration is significantly lower than the corresponding Michaelis constant, for example, in the Omnia assays of epidermal growth factor receptor (EGFR) kinase. The newly described method is applicable to experimental conditions where the enzyme concentration is significantly lower than the dissociation constant of the initially formed reversible enzyme-inhibitor complex (no "tight binding"). A detailed comparison with the traditionally used rate equation for covalent inhibition is presented. The two methods produce approximately identical values of the first-order inactivation rate constant (kinact). However, the inhibition constant (Ki), and therefore also the second-order inactivation rate constant kinact/Ki, is underestimated by the traditional method by up to an order of magnitude.


Assuntos
Inibidores Enzimáticos/farmacologia , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/metabolismo , Modelos Químicos , Cinética , Dinâmica não Linear
6.
Proc Natl Acad Sci U S A ; 109(45): 18281-9, 2012 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-22988103

RESUMO

Analyses of compounds in clinical development have shown that ligand efficient-molecules with privileged physical properties and low dose are less likely to fail in the various stages of clinical testing, have fewer postapproval withdrawals, and are less likely to receive black box safety warnings. However, detailed side-by-side examination of molecular interactions and properties within single drug classes are lacking. As a class, VEGF receptor tyrosine kinase inhibitors (VEGFR TKIs) have changed the landscape of how cancer is treated, particularly in clear cell renal cell carcinoma, which is molecularly linked to the VEGF signaling axis. Despite the clear role of the molecular target, member molecules of this validated drug class exhibit distinct clinical efficacy and safety profiles in comparable renal cell carcinoma clinical studies. The first head-to-head randomized phase III comparative study between active VEGFR TKIs has confirmed significant differences in clinical performance [Rini BI, et al. (2011) Lancet 378:193-1939]. To elucidate how fundamental drug potency-efficiency is achieved and impacts differentiation within the VEGFR TKI class, we determined potencies, time dependence, selectivities, and X-ray structures of the drug-kinase complexes using a VEGFR2 TK construct inclusive of the important juxtamembrane domain. Collectively, the studies elucidate unique drug-kinase interactions that are dependent on distinct juxtamembrane domain conformations, resulting in significant potency and ligand efficiency differences. The identified structural trends are consistent with in vitro measurements, which translate well to clinical performance, underscoring a principle that may be broadly applicable to prospective drug design for optimal in vivo performance.


Assuntos
Conformação Molecular , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/química , Carcinoma de Células Renais/tratamento farmacológico , Ensaios Clínicos como Assunto , Cristalografia por Raios X , Intervalo Livre de Doença , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Humanos , Neoplasias Renais/tratamento farmacológico , Modelos Moleculares , Inibidores de Proteínas Quinases/metabolismo , Inibidores de Proteínas Quinases/uso terapêutico , Estrutura Terciária de Proteína , Resultado do Tratamento , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
7.
Bioorg Med Chem Lett ; 24(17): 4187-91, 2014 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-25091930

RESUMO

The design of potent Pin1 inhibitors has been challenging because its active site specifically recognizes a phospho-protein epitope. The de novo design of phosphate-based Pin1 inhibitors focusing on the phosphate recognition pocket and the successful replacement of the phosphate group with a carboxylate have been previously reported. The potency of the carboxylate series is now further improved through structure-based optimization of ligand-protein interactions in the proline binding site which exploits the H-bond interactions necessary for Pin1 catalytic function. Further optimization using a focused library approach led to the discovery of low nanomolar non-phosphate small molecular Pin1 inhibitors. Structural modifications designed to improve cell permeability resulted in Pin1 inhibitors with low micromolar anti-proliferative activities against cancer cells.


Assuntos
Benzimidazóis/farmacologia , Ácidos Carboxílicos/farmacologia , Inibidores Enzimáticos/farmacologia , Peptidilprolil Isomerase/antagonistas & inibidores , Fosfatos/química , Benzimidazóis/síntese química , Benzimidazóis/química , Ácidos Carboxílicos/síntese química , Ácidos Carboxílicos/química , Domínio Catalítico/efeitos dos fármacos , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Humanos , Estrutura Molecular , Peptidilprolil Isomerase de Interação com NIMA , Peptidilprolil Isomerase/metabolismo , Relação Estrutura-Atividade
8.
Bioorg Med Chem Lett ; 23(20): 5680-3, 2013 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-23992863

RESUMO

Although peptide-based molecules are known to have therapeutic potential, the generation of phage focused libraries to optimize peptides is effort-consuming. A chemical method is developed to extend a maleimide-conjugated peptide with a cysteine-containing random-peptide phage display library. As a proof of concept, a 15-mer epidermal growth factor receptor (EGFR)-binding peptide was synthesized with a maleimide group at its C-terminus and then conjugated to the cysteine-containing library. After panning and screening, several extended peptides were discovered and tested to have a higher affinity to EGFR. This strategy can have broad utility to optimize pharmacophores of any modalities (peptides, unnatural peptides, drug conjugates) capable of bearing a maleimide group.


Assuntos
Cisteína/química , Maleimidas/química , Peptídeos/química , Sequência de Aminoácidos , Cisteína/metabolismo , Receptores ErbB/genética , Receptores ErbB/metabolismo , Humanos , Dados de Sequência Molecular , Biblioteca de Peptídeos , Peptídeos/genética , Peptídeos/metabolismo , Ligação Proteica , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética
9.
Proc Natl Acad Sci U S A ; 107(20): 9446-51, 2010 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-20439741

RESUMO

Despite abundant evidence that aberrant Rho-family GTPase activation contributes to most steps of cancer initiation and progression, there is a dearth of inhibitors of their effectors (e.g., p21-activated kinases). Through high-throughput screening and structure-based design, we identify PF-3758309, a potent (K(d) = 2.7 nM), ATP-competitive, pyrrolopyrazole inhibitor of PAK4. In cells, PF-3758309 inhibits phosphorylation of the PAK4 substrate GEF-H1 (IC(50) = 1.3 nM) and anchorage-independent growth of a panel of tumor cell lines (IC(50) = 4.7 +/- 3 nM). The molecular underpinnings of PF-3758309 biological effects were characterized using an integration of traditional and emerging technologies. Crystallographic characterization of the PF-3758309/PAK4 complex defined determinants of potency and kinase selectivity. Global high-content cellular analysis confirms that PF-3758309 modulates known PAK4-dependent signaling nodes and identifies unexpected links to additional pathways (e.g., p53). In tumor models, PF-3758309 inhibits PAK4-dependent pathways in proteomic studies and regulates functional activities related to cell proliferation and survival. PF-3758309 blocks the growth of multiple human tumor xenografts, with a plasma EC(50) value of 0.4 nM in the most sensitive model. This study defines PAK4-related pathways, provides additional support for PAK4 as a therapeutic target with a unique combination of functions (apoptotic, cytoskeletal, cell-cycle), and identifies a potent, orally available small-molecule PAK inhibitor with significant promise for the treatment of human cancers.


Assuntos
Proliferação de Células/efeitos dos fármacos , Modelos Moleculares , Neoplasias/metabolismo , Pirazóis/farmacologia , Pirróis/farmacologia , Transdução de Sinais/efeitos dos fármacos , Quinases Ativadas por p21/antagonistas & inibidores , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Cristalografia , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Humanos , Neoplasias/tratamento farmacológico , Fosforilação/efeitos dos fármacos , Pirazóis/química , Pirazóis/metabolismo , Pirróis/química , Pirróis/metabolismo , Fatores de Troca de Nucleotídeo Guanina Rho
10.
Bioorg Chem ; 39(5-6): 192-210, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21872901

RESUMO

Protein kinases are fascinating biological catalysts with a rapidly expanding knowledge base, a growing appreciation in cell regulatory control, and an ascendant role in successful therapeutic intervention. To better understand protein kinases, the molecular underpinnings of phosphoryl group transfer, protein phosphorylation, and inhibitor interactions are examined. This analysis begins with a survey of phosphate group and phosphoprotein properties which provide context to the evolutionary selection of phosphorylation as a central mechanism for biological regulation of most cellular processes. Next, the kinetic and catalytic mechanisms of protein kinases are examined with respect to model aqueous systems to define the elements of catalysis. A brief structural biology overview further delves into the molecular basis of catalysis and regulation of catalytic activity. Concomitant with a prominent role in normal physiology, protein kinases have important roles in the disease state. To facilitate effective kinase drug discovery, classic and emerging approaches for characterizing kinase inhibitors are evaluated including biochemical assay design, inhibitor mechanism of action analysis, and proper kinetic treatment of irreversible inhibitors. As the resulting protein kinase inhibitors can modulate intended and unintended targets, profiling methods are discussed which can illuminate a more complete range of an inhibitor's biological activities to enable more meaningful cellular studies and more effective clinical studies. Taken as a whole, a wealth of protein kinase biochemistry knowledge is available, yet it is clear that a substantial extent of our understanding in this field remains to be discovered which should yield many new opportunities for therapeutic intervention.


Assuntos
Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Proteínas Quinases/química , Proteínas Quinases/metabolismo , Trifosfato de Adenosina/metabolismo , Ácido Aspártico/metabolismo , Domínio Catalítico , Descoberta de Drogas , Cinética , Fosforilação
11.
Mol Cancer Ther ; 20(12): 2446-2456, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34625502

RESUMO

NTRK chromosomal rearrangements yield oncogenic TRK fusion proteins that are sensitive to TRK inhibitors (larotrectinib and entrectinib) but often mutate, limiting the durability of response for NTRK + patients. Next-generation inhibitors with compact macrocyclic structures (repotrectinib and selitrectinib) were designed to avoid resistance mutations. Head-to-head potency comparisons of TRK inhibitors and molecular characterization of binding interactions are incomplete, obscuring a detailed understanding of how molecular characteristics translate to potency. Larotrectinib, entrectinib, selitrectinib, and repotrectinib were characterized using cellular models of wild-type TRKA/B/C fusions and resistance mutant variants with a subset evaluated in xenograft tumor models. Crystal structures were determined for repotrectinib bound to TRKA (wild-type, solvent-front mutant). TKI-naïve and pretreated case studies are presented. Repotrectinib was the most potent inhibitor of wild-type TRKA/B/C fusions and was more potent than selitrectinib against all tested resistance mutations, underscoring the importance of distinct features of the macrocycle structures. Cocrystal structures of repotrectinib with wild-type TRKA and the TRKAG595R SFM variant elucidated how differences in macrocyclic inhibitor structure, binding orientation, and conformational flexibility affect potency and mutant selectivity. The SFM crystal structure revealed an unexpected intramolecular arginine sidechain interaction. Repotrectinib caused tumor regression in LMNA-NTRK1 xenograft models harboring GKM, SFM, xDFG, and GKM + SFM compound mutations. Durable responses were observed in TKI-naïve and -pretreated patients with NTRK + cancers treated with repotrectinib (NCT03093116). This comprehensive analysis of first- and second-generation TRK inhibitors informs the clinical utility, structural determinants of inhibitor potency, and design of new generations of macrocyclic inhibitors.


Assuntos
Compostos Macrocíclicos/uso terapêutico , Proteínas de Fusão Oncogênica/uso terapêutico , Pirazóis/uso terapêutico , Humanos , Compostos Macrocíclicos/farmacologia , Modelos Moleculares , Mutação , Neoplasias/tratamento farmacológico , Proteínas de Fusão Oncogênica/farmacologia , Pirazóis/farmacologia
12.
Mol Cancer Ther ; 20(9): 1499-1507, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34158340

RESUMO

Since 2011, with the approval of crizotinib and subsequent approval of four additional targeted therapies, anaplastic lymphoma kinase (ALK) inhibitors have become important treatments for a subset of patients with lung cancer. Each generation of ALK inhibitor showed improvements in terms of central nervous system (CNS) penetration and potency against wild-type (WT) ALK, yet a key continued limitation is their susceptibility to resistance from ALK active-site mutations. The solvent front mutation (G1202R) and gatekeeper mutation (L1196M) are major resistance mechanisms to the first two generations of inhibitors while patients treated with the third-generation ALK inhibitor lorlatinib often experience progressive disease with multiple mutations on the same allele (mutations in cis, compound mutations). TPX-0131 is a compact macrocyclic molecule designed to fit within the ATP-binding boundary to inhibit ALK fusion proteins. In cellular assays, TPX-0131 was more potent than all five approved ALK inhibitors against WT ALK and many types of ALK resistance mutations, e.g., G1202R, L1196M, and compound mutations. In biochemical assays, TPX-0131 potently inhibited (IC50 <10 nmol/L) WT ALK and 26 ALK mutants (single and compound mutations). TPX-0131, but not lorlatinib, caused complete tumor regression in ALK (G1202R) and ALK compound mutation-dependent xenograft models. Following repeat oral administration of TPX-0131 to rats, brain levels of TPX-0131 were approximately 66% of those observed in plasma. Taken together, preclinical studies show that TPX-0131 is a CNS-penetrant, next-generation ALK inhibitor that has potency against WT ALK and a spectrum of acquired resistance mutations, especially the G1202R solvent front mutation and compound mutations, for which there are currently no effective therapies.


Assuntos
Quinase do Linfoma Anaplásico , Antineoplásicos , Transformação Celular Neoplásica , Resistencia a Medicamentos Antineoplásicos , Compostos Macrocíclicos , Mutação , Inibidores de Proteínas Quinases , Animais , Feminino , Humanos , Camundongos , Quinase do Linfoma Anaplásico/antagonistas & inibidores , Quinase do Linfoma Anaplásico/genética , Quinase do Linfoma Anaplásico/metabolismo , Antineoplásicos/farmacocinética , Antineoplásicos/farmacologia , Apoptose , Linfócitos B/efeitos dos fármacos , Proliferação de Células , Transformação Celular Neoplásica/efeitos dos fármacos , Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/patologia , Compostos Macrocíclicos/química , Compostos Macrocíclicos/farmacocinética , Compostos Macrocíclicos/farmacologia , Camundongos Nus , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacocinética , Inibidores de Proteínas Quinases/farmacologia , Ratos Sprague-Dawley , Distribuição Tecidual , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
13.
J Med Chem ; 64(13): 9056-9077, 2021 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-34110834

RESUMO

Control of the cell cycle through selective pharmacological inhibition of CDK4/6 has proven beneficial in the treatment of breast cancer. Extending this level of control to additional cell cycle CDK isoforms represents an opportunity to expand to additional tumor types and potentially provide benefits to patients that develop tumors resistant to selective CDK4/6 inhibitors. However, broad-spectrum CDK inhibitors have a long history of failure due to safety concerns. In this approach, we describe the use of structure-based drug design and Free-Wilson analysis to optimize a series of CDK2/4/6 inhibitors. Further, we detail the use of molecular dynamics simulations to provide insights into the basis for selectivity against CDK9. Based on overall potency, selectivity, and ADME profile, PF-06873600 (22) was identified as a candidate for the treatment of cancer and advanced to phase 1 clinical trials.


Assuntos
Antineoplásicos/farmacologia , Descoberta de Drogas , Inibidores de Proteínas Quinases/farmacologia , Administração Oral , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Quinase 2 Dependente de Ciclina/antagonistas & inibidores , Quinase 2 Dependente de Ciclina/metabolismo , Quinase 4 Dependente de Ciclina/antagonistas & inibidores , Quinase 4 Dependente de Ciclina/metabolismo , Quinase 6 Dependente de Ciclina/antagonistas & inibidores , Quinase 6 Dependente de Ciclina/metabolismo , Cães , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Humanos , Injeções Intravenosas , Camundongos , Estrutura Molecular , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Inibidores de Proteínas Quinases/administração & dosagem , Inibidores de Proteínas Quinases/química , Relação Estrutura-Atividade , Células Tumorais Cultivadas
14.
Cancer Cell ; 39(10): 1404-1421.e11, 2021 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-34520734

RESUMO

The CDK4/6 inhibitor, palbociclib (PAL), significantly improves progression-free survival in HR+/HER2- breast cancer when combined with anti-hormonals. We sought to discover PAL resistance mechanisms in preclinical models and through analysis of clinical transcriptome specimens, which coalesced on induction of MYC oncogene and Cyclin E/CDK2 activity. We propose that targeting the G1 kinases CDK2, CDK4, and CDK6 with a small-molecule overcomes resistance to CDK4/6 inhibition. We describe the pharmacodynamics and efficacy of PF-06873600 (PF3600), a pyridopyrimidine with potent inhibition of CDK2/4/6 activity and efficacy in multiple in vivo tumor models. Together with the clinical analysis, MYC activity predicts (PF3600) efficacy across multiple cell lineages. Finally, we find that CDK2/4/6 inhibition does not compromise tumor-specific immune checkpoint blockade responses in syngeneic models. We anticipate that (PF3600), currently in phase 1 clinical trials, offers a therapeutic option to cancer patients in whom CDK4/6 inhibition is insufficient to alter disease progression.


Assuntos
Ciclo Celular/efeitos dos fármacos , Quinase 2 Dependente de Ciclina/antagonistas & inibidores , Quinase 4 Dependente de Ciclina/antagonistas & inibidores , Quinase 6 Dependente de Ciclina/antagonistas & inibidores , Neoplasias/tratamento farmacológico , Feminino , Humanos , Masculino , Neoplasias/imunologia
15.
Bioorg Med Chem Lett ; 20(7): 2210-4, 2010 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-20207139

RESUMO

Following the discovery of a novel series of phosphate-containing small molecular Pin1 inhibitors, the drug design strategy shifted to replacement of the phosphate group with an isostere with potential better pharmaceutical properties. The initial loss in potency of carboxylate analogs was likely due to weaker charge-charge interactions in the putative phosphate binding pocket and was subsequently recovered by structure-based optimization of ligand-protein interactions in the proline binding site, leading to the discovery of a sub-micromolar non-phosphate small molecular Pin1 inhibitor.


Assuntos
Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Peptidilprolil Isomerase/antagonistas & inibidores , Peptidilprolil Isomerase/metabolismo , Sítios de Ligação , Cristalografia por Raios X , Desenho de Fármacos , Humanos , Modelos Moleculares , Peptidilprolil Isomerase de Interação com NIMA , Peptidilprolil Isomerase/química , Ligação Proteica , Relação Estrutura-Atividade
16.
Cell Rep ; 30(6): 1935-1950.e8, 2020 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-32049022

RESUMO

Alternative splicing is well understood to enhance proteome diversity as cells respond to stimuli. However, mechanistic understanding for how the spliceosome processes precursor messenger RNA (mRNA) transcripts to achieve template diversification is incomplete. We use recently developed enzymatic inhibitors of protein arginine methyltransferase 5 (PRMT5) and human naive T lymphocyte activation as a model system to uncover a precise set of mRNA transcripts that require symmetric arginine dimethylation. This methylation-dependent splicing selectivity is associated with a limited set of signaling pathways that are affected when PRMT5 is inhibited. Specifically, we identify a conserved role for symmetric arginine dimethylation in the induction of antiviral type I and type III interferon signaling following T cell receptor and pattern recognition receptor stimulation in human T lymphocytes and undifferentiated human THP-1 monocytes. Altogether, these findings reveal a mechanism by which cells may be enabled to precisely modulate transcript heterogeneity to orchestrate specific functional outcomes.


Assuntos
Processamento Alternativo/genética , Arginina/metabolismo , Interferons/metabolismo , Splicing de RNA/genética , Humanos , Transdução de Sinais
17.
J Med Chem ; 63(21): 12725-12747, 2020 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-33054210

RESUMO

The novel coronavirus disease COVID-19 that emerged in 2019 is caused by the virus SARS CoV-2 and named for its close genetic similarity to SARS CoV-1 that caused severe acute respiratory syndrome (SARS) in 2002. Both SARS coronavirus genomes encode two overlapping large polyproteins, which are cleaved at specific sites by a 3C-like cysteine protease (3CLpro) in a post-translational processing step that is critical for coronavirus replication. The 3CLpro sequences for CoV-1 and CoV-2 viruses are 100% identical in the catalytic domain that carries out protein cleavage. A research effort that focused on the discovery of reversible and irreversible ketone-based inhibitors of SARS CoV-1 3CLpro employing ligand-protease structures solved by X-ray crystallography led to the identification of 3 and 4. Preclinical experiments reveal 4 (PF-00835231) as a potent inhibitor of CoV-2 3CLpro with suitable pharmaceutical properties to warrant further development as an intravenous treatment for COVID-19.


Assuntos
Antivirais/farmacologia , Proteases 3C de Coronavírus/antagonistas & inibidores , Cetonas/farmacologia , Inibidores de Proteases/farmacologia , SARS-CoV-2/efeitos dos fármacos , Animais , Antivirais/síntese química , Antivirais/metabolismo , Domínio Catalítico , Chlorocebus aethiops , Proteases 3C de Coronavírus/química , Proteases 3C de Coronavírus/metabolismo , Cristalografia por Raios X , Humanos , Cetonas/síntese química , Cetonas/metabolismo , Inibidores de Proteases/síntese química , Inibidores de Proteases/metabolismo , Ligação Proteica , Células Vero , Tratamento Farmacológico da COVID-19
18.
Biochemistry ; 48(23): 5339-49, 2009 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-19459657

RESUMO

The c-Met receptor tyrosine kinase (RTK) is a key regulator in cancer, in part, through oncogenic mutations. Eight clinically relevant mutants were characterized by biochemical, biophysical, and cellular methods. The c-Met catalytic domain was highly active in the unphosphorylated state (k(cat) = 1.0 s(-1)) and achieved 160-fold enhanced catalytic efficiency (k(cat)/K(m)) upon activation to 425000 s(-1) M(-1). c-Met mutants had 2-10-fold higher basal enzymatic activity (k(cat)) but achieved maximal activities similar to those of wild-type c-Met, except for Y1235D, which underwent a reduction in maximal activity. Small enhancements of basal activity were shown to have profound effects on the acquisition of full enzymatic activity achieved through accelerating rates of autophosphorylation. Biophysical analysis of c-Met mutants revealed minimal melting temperature differences indicating that the mutations did not alter protein stability. A model of RTK activation is proposed to describe how a RTK response may be matched to a biological context through enzymatic properties. Two c-Met clinical candidates from aminopyridine and triazolopyrazine chemical series (PF-02341066 and PF-04217903) were studied. Biochemically, each series produced molecules that are highly selective against a large panel of kinases, with PF-04217903 (>1000-fold selective relative to 208 kinases) being more selective than PF-02341066. Although these prototype inhibitors have similar potencies against wild-type c-Met (K(i) = 6-7 nM), significant differences in potency were observed for clinically relevant mutations evaluated in both biochemical and cellular contexts. In particular, PF-02341066 was 180-fold more active against the Y1230C mutant c-Met than PF-04217903. These highly optimized inhibitors indicate that for kinases susceptible to active site mutations, inhibitor design may need to balance overall kinase selectivity with the ability to inhibit multiple mutant forms of the kinase (penetrance).


Assuntos
Aminopiridinas/química , Mutação , Inibidores de Proteínas Quinases/química , Proteínas Proto-Oncogênicas c-met/química , Pirazinas/química , Aminopiridinas/farmacologia , Sítios de Ligação , Catálise , Humanos , Cinética , Fosforilação , Conformação Proteica , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-met/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-met/genética , Pirazinas/farmacologia
19.
Biochemistry ; 48(29): 7019-31, 2009 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-19526984

RESUMO

The catalytic domains of protein kinases are commonly treated as independent modular units with distinct biological functions. Here, the interactions between the catalytic and juxtamembrane domains of VEGFR2 are studied. Highly purified preparations of the receptor tyrosine kinase VEGFR2 catalytic domain without (VEGFR2-CD) and with (VEGFR2-CD/JM) the juxtamembrane (JM) domain were characterized by kinetic, biophysical, and structural methods. Although the catalytic parameters for both constructs were similar, the autophosphorylation rate of VEGFR2-CD/JM was substantially faster than VEGFR2-CD. The first event in the autophosphorylation reaction was phosphorylation of JM residue Y801 followed by phosphorylation of activation loop residues in the CD. The rates of activation loop autophosphorylation for the two constructs were determined to be similar. The autophosphorylation rate of Y801 was invariant on enzyme concentration, which is consistent with an intramolecular reaction. In addition, the first biochemical characterization of the advanced clinical compound axitinib is reported. Axitinib was found to have 40-fold enhanced biochemical potency toward VEGFR2-CD/JM (K(i) = 28 pM) compared to VEGFR2-CD, which correlates better with cellular potency. Calorimetric studies, including a novel ITC compound displacement method, confirmed the potency and provided insight into the thermodynamic origin of the potency differences. A structural model for the VEGFR2-CD/JM is proposed based on the experimental findings reported here and on the JM position in c-Kit, FLT3, and CSF1/cFMS. The described studies identify potential functions of the VEGFR2 JM domain with implications to both receptor biology and inhibitor design.


Assuntos
Imidazóis/farmacologia , Indazóis/farmacologia , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Axitinibe , Calorimetria/métodos , Domínio Catalítico , Linhagem Celular , Cromatografia Líquida , Gastrinas/farmacologia , Humanos , Cinética , Fosforilação , Ressonância de Plasmônio de Superfície , Espectrometria de Massas em Tandem , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/química
20.
Bioorg Med Chem Lett ; 19(19): 5613-6, 2009 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-19729306

RESUMO

Pin1 is a member of the cis-trans peptidyl-prolyl isomerase family with potential anti-cancer therapeutic value. Here we report structure-based de novo design and optimization of novel Pin1 inhibitors. Without a viable lead from internal screenings, we designed a series of novel Pin1 inhibitors by interrogating and exploring a protein crystal structure of Pin1. The ligand efficiency of the initial concept molecule was optimized with integrated SBDD and parallel chemistry approaches, resulting in a more attractive lead series.


Assuntos
Inibidores Enzimáticos/química , Peptidilprolil Isomerase/antagonistas & inibidores , Sequência de Aminoácidos , Sítios de Ligação , Técnicas de Química Combinatória , Simulação por Computador , Cristalografia por Raios X , Desenho de Fármacos , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/farmacologia , Humanos , Peptidilprolil Isomerase de Interação com NIMA , Peptidilprolil Isomerase/metabolismo , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA