Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Divers ; 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38374474

RESUMO

The poly (ADP-ribose) polymerase-1 (PARP-1) enzyme is an important target in the treatment of breast cancer. Currently, treatment options include the drugs Olaparib, Niraparib, Rucaparib, and Talazoparib; however, these drugs can cause severe side effects including hematological toxicity and cardiotoxicity. Although in silico models for the prediction of PARP-1 activity have been developed, the drawbacks of these models include low specificity, a narrow applicability domain, and a lack of interpretability. To address these issues, a comprehensive machine learning (ML)-based quantitative structure-activity relationship (QSAR) approach for the informed prediction of PARP-1 activity is presented. Classification models built using the Synthetic Minority Oversampling Technique (SMOTE) for data balancing gave robust and predictive models based on the K-nearest neighbor algorithm (accuracy 0.86, sensitivity 0.88, specificity 0.80). Regression models were built on structurally congeneric datasets, with the models for the phthalazinone class and fused cyclic compounds giving the best performance. In accordance with the Organization for Economic Cooperation and Development (OECD) guidelines, a mechanistic interpretation is proposed using the Shapley Additive Explanations (SHAP) to identify the important topological features to differentiate between PARP-1 actives and inactives. Moreover, an analysis of the PARP-1 dataset revealed the prevalence of activity cliffs, which possibly negatively impacts the model's predictive performance. Finally, a set of chemical transformation rules were extracted using the matched molecular pair analysis (MMPA) which provided mechanistic insights and can guide medicinal chemists in the design of novel PARP-1 inhibitors.

2.
Nanotechnology ; 34(19)2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36731115

RESUMO

A rapid, clean plasma-chemical technique is demonstrated here, for cost-effective, synthesis of surface vacancy engineered, 2D, molybdenum-oxide nanomaterials, during a one-step, integrated synthesis-hydrogenation process for biomedical applications. A laminar plasma beam populated with O and H radicals impinges on a molybdenum target, out of which molybdenum-oxide nanomaterials are very rapidly generated with controlled surface O vacancies. 2D, dark-blue coloured, nano-flake/ribbon like MoO3-xis produced maximum up to 194 g h-1, the core of which still remains as stoichiometric molybdenum-oxide. These nanomaterials can get heated-up by absorbing energy from a near-infrared (NIR) laser, which enable them as photothermal therapy (PTT) candidate material for the invasive precision therapy of cancer. The surface defects endows the products with robust ferromagnetism at room temperature conditions (maximum saturation-magnetization: 6.58 emu g-1), which is order of magnitude stronger than most other vacancy engineered nanomaterials. These nanometric metal-oxides are observed to be perfectly compatible in animal physiological environment and easily dispersed in an aqueous solution even without any pre-treatment. The MoO3-xnanomaterials are stable against further oxidation even under prolonged atmospheric exposure.In vitroexperiments confirm that they have ideal efficacy for photothermal ablation of human and murine melanoma cancer at relatively lower dose. Duringin vivoPTT treatments, they may be manipulated with a simple external magnetic field for targeted delivery at the malignant tumours. It is demonstrated that commensurate to the neutralization of the malignant cells, the nanomaterials themselves get self-degraded, which should get easily excreted out of the body.


Assuntos
Nanoestruturas , Neoplasias , Animais , Humanos , Camundongos , Molibdênio , Fototerapia/métodos , Neoplasias/tratamento farmacológico , Nanoestruturas/uso terapêutico , Óxidos/uso terapêutico
3.
AAPS PharmSciTech ; 23(4): 89, 2022 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-35296955

RESUMO

The low oral bioavailability, short biological half-life, high dose, and frequent dosing of berberine (BBR) contribute to its restricted clinical use despite its extensive pharmacological activity. Thus, the objective of this study was to formulate sustained-release microparticles (MPs) using a pH-independent release polymer and to evaluate their potential to improve the oral bioavailability of BBR. BBR loaded MPs were prepared using the emulsion crosslinking method and evaluated for particle size, circularity, morphology, entrapment efficiency, solid-state analysis, swelling index, and in vitro BBR release study fitted with different models of release kinetics. The MPs exhibited desired particle sizes ranges between 11.09-11.62 µm and were almost spherical in shape, as confirmed by the circularity value and micrographic images. A loss of BBR crystallinity was observed after encapsulation in MPs, as evident from various solid-state analyses. The final optimized batch (F3) showed highest % BBR entrapment efficiency value of 81.63% ± 4.9. The in vitro BBR release performance in both acidic and alkaline media showed the desired sustained release behavior from the crosslinked MPs, where the maximum BBR release was observed at alkaline pH, which is in accordance with the swelling study data. In the in vivo study, the oral absorption profiles of BBR from both pristine and MPs formats were investigated using in-house prototyped 3D printed hollow capsules as a unit dose carrier. In vivo data showed sustained and prolonged absorption behavior of BBR from MPs compared to their pristine counterparts, which resulted in a cumulative increment of relative oral bioavailability to mitigate the aforementioned issues related to BBR. Graphical Abstract.


Assuntos
Berberina , Administração Oral , Disponibilidade Biológica , Tamanho da Partícula , Impressão Tridimensional
4.
Drug Metab Rev ; 53(3): 285-320, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33980079

RESUMO

Drug-drug interactions mediated by transporters are a serious clinical concern hence a tremendous amount of work has been done on the characterization of the transporter-mediated proteins in humans and animals. The underlying mechanism for the transporter-mediated drug-drug interaction is the induction or inhibition of the transporter which is involved in the cellular uptake and efflux of drugs. Transporter of the brain, liver, kidney, and intestine are major determinants that alter the absorption, distribution, metabolism, excretion profile of drugs, and considerably influence the pharmacokinetic profile of drugs. As a consequence, transporter proteins may affect the therapeutic activity and safety of drugs. However, mounting evidence suggests that many drugs change the activity and/or expression of the transporter protein. Accordingly, evaluation of drug interaction during the drug development process is an integral part of risk assessment and regulatory requirements. Therefore, this review will highlight the clinical significance of the transporter, their role in disease, possible cause underlying the drug-drug interactions using analytical tools, and update on the regulatory requirement. The recent in-silico approaches which emphasize the advancement in the discovery of drug-drug interactions are also highlighted in this review. Besides, we discuss several endogenous biomarkers that have shown to act as substrates for many transporters, which could be potent determinants to find the drug-drug interactions mediated by transporters. Transporter-mediated drug-drug interactions are taken into consideration in the drug approval process therefore we also provided the extrapolated decision trees from in-vitro to in-vivo, which may trigger the follow-up to clinical studies.


Assuntos
Fígado , Proteínas de Membrana Transportadoras , Animais , Transporte Biológico , Interações Medicamentosas , Humanos , Rim/metabolismo , Fígado/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Preparações Farmacêuticas/metabolismo
5.
Phytother Res ; 35(9): 5068-5102, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33894007

RESUMO

Cardiovascular diseases (CVDs) are an ever-growing problem and are the most common cause of death worldwide. The uncontrolled production of reactive oxygen species (ROS) and the activation of ROS associated with various cell signaling pathways with oxidative cellular damage are the most common pathological conditions connected with CVDs including endothelial dysfunction, hypercontractility of vascular smooth muscle, cardiac hypertrophy and heart failure. The nuclear factor E2-related factor 2 (Nrf2) is a basic leucine zipper redox transcription factor, together with its negative regulator, kelch-like ECH-associated protein 1 (Keap1), which serves as a key regulator of cellular defense mechanisms to combat oxidative stress and associated diseases. Multiple lines of evidence described here support the cardiac protective property of Nrf2 in various experimental models of cardiac related disease conditions. In this review, we emphasized the molecular mechanisms of Nrf2 and described the detailed outline of current findings on the therapeutic possibilities of the Nrf2 activators specifically from herbal origin in various CVDs. Based on evidence from various preclinical experimental models, we have highlighted the activation of Nrf2 pathway as a budding therapeutic option for the prevention and treatment of CVDs, which needs further investigation and validation in the clinical settings.


Assuntos
Doenças Cardiovasculares , Fator 2 Relacionado a NF-E2 , Preparações de Plantas/farmacologia , Animais , Doenças Cardiovasculares/tratamento farmacológico , Humanos , Proteína 1 Associada a ECH Semelhante a Kelch , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Traumatismo por Reperfusão
6.
Drug Dev Ind Pharm ; 47(8): 1200-1208, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33493008

RESUMO

In this work, hot-melt extrusion (HME) is coupled with fused deposition modeling (FDM) mediated 3D printing to demonstrate additive manufacturing to fabricate immediate release (IR) prototypes of olanzapine with the aim of enhanced solubility using a fast disintegrating polymer (Kollicoat® IR). Drug-polymer solubility and interaction parameters were estimated by Hansen solubility parameters and Hildebrand-Scott equation. The obtained values signified drug-polymer miscibility. The detailed in vitro physicochemical evaluations of the developed filament through HME and its derived 3D printed tablet by FDM technique were assessed thoroughly by several analytical means such as light microscopy, DSC, XRD, FT-IR, SEM, etc. The average disintegration time of this developed 3D printed IR tablet was found to be 63.33 (±3.6) sec complying with the USP limit. Additionally, in vitro dissolution study data revealed almost close correlations and both showed 100% of drug release within 15 min, thus complying with the definition of IR tablet. Thus, this study demonstrates the feasibility of directly using olanzapine-Kollicoat® IR through the HME process without the addition of any plasticizers, organic solvents, etc. and coupling of HME with 3D printing technology allowing prototypes of IR tablet of olanzapine.


Assuntos
Excipientes , Tecnologia Farmacêutica , Liberação Controlada de Fármacos , Olanzapina , Polímeros , Impressão Tridimensional , Espectroscopia de Infravermelho com Transformada de Fourier , Comprimidos , Tecnologia Farmacêutica/métodos
7.
Pharm Dev Technol ; 26(9): 1010-1020, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34412566

RESUMO

This work focuses on the extrusion of a brittle, tacky, cationic copolymer i.e. Eudragit® E-100 to prepare filament and subsequent 3D printing of hollow capsular device using the extruded filament. An optimum amount of talc and triethyl citrate was used for the possible extrusion of the polymer. There was no thermal and chemical degradation of the polymer observed after extrusion confirmed by DSC and FTIR analysis. Microscopic analysis of the printed capsule showed the layer-by-layer manner of 3D printing. Capsule parts were printed according to the set dimensions (00 size) with minimal deviation. Printed capsule showed the soluble behaviour in gastric fluid pH 1.2 where within 15 min the encapsulated drug encounters with the dissolution medium and almost 70% drug was dissolved within 4 hr. In case of phosphate buffer pH 6.8, the printed capsule showed a longed swelling behaviour up to 12 hr and then gradually bursting of capsule occurred wherein more than 90% encapsulated drug was dissolved within 36 hr. Enteric coating of the printed capsule showed similar behaviour in alkaline medium that observed with non-enteric capsule. This indicates the potential application of this printed capsules for both gastric and intestinal specific delayed drug delivery by a single step enteric coating process.


Assuntos
Acrilatos/síntese química , Acrilatos/farmacocinética , Química Farmacêutica/métodos , Polímeros/síntese química , Polímeros/farmacocinética , Impressão Tridimensional , Berberina/síntese química , Berberina/farmacocinética , Cápsulas , Preparações de Ação Retardada/síntese química , Preparações de Ação Retardada/farmacocinética , Avaliação Pré-Clínica de Medicamentos/métodos , Liberação Controlada de Fármacos , Comprimidos com Revestimento Entérico
8.
Malar J ; 13: 310, 2014 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-25108445

RESUMO

BACKGROUND: Malaria presents public health challenge despite extensive intervention campaigns. A 30-year hindcast of the climatic suitability for malaria transmission in India is presented, using meteorological variables from a state of the art seasonal forecast model to drive a process-based, dynamic disease model. METHODS: The spatial distribution and seasonal cycles of temperature and precipitation from the forecast model are compared to three observationally-based meteorological datasets. These time series are then used to drive the disease model, producing a simulated forecast of malaria and three synthetic malaria time series that are qualitatively compared to contemporary and pre-intervention malaria estimates. The area under the Relative Operator Characteristic (ROC) curve is calculated as a quantitative metric of forecast skill, comparing the forecast to the meteorologically-driven synthetic malaria time series. RESULTS AND DISCUSSION: The forecast shows probabilistic skill in predicting the spatial distribution of Plasmodium falciparum incidence when compared to the simulated meteorologically-driven malaria time series, particularly where modelled incidence shows high seasonal and interannual variability such as in Orissa, West Bengal, and Jharkhand (North-east India), and Gujarat, Rajastan, Madhya Pradesh and Maharashtra (North-west India). Focusing on these two regions, the malaria forecast is able to distinguish between years of "high", "above average" and "low" malaria incidence in the peak malaria transmission seasons, with more than 70% sensitivity and a statistically significant area under the ROC curve. These results are encouraging given that the three month forecast lead time used is well in excess of the target for early warning systems adopted by the World Health Organization. This approach could form the basis of an operational system to identify the probability of regional malaria epidemics, allowing advanced and targeted allocation of resources for combatting malaria in India.


Assuntos
Malária/epidemiologia , Modelos Biológicos , Modelos Estatísticos , Estações do Ano , Humanos , Índia/epidemiologia , Curva ROC , Tempo (Meteorologia)
9.
Heliyon ; 9(3): e14167, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36925533

RESUMO

Drug-polymer miscibility is a critical requirement for the efficient design and development of amorphous solid dispersions. The objective of the current study was to determine the miscibility between dapsone (DAP) and poly(1-vinylpyrrolidone-co-vinyl acetate) (PVP-VA) through theoretical and experimental approaches, including the use of a thermodynamic phase diagram and Gibbs free energy of mixing. In the theoretical study, the difference in the solubility parameter between the DAP and PVP-VA was 2.74, the interaction parameter was 0.50, and the distance between the drug and polymer in the Bagley plot was 2.60. Hence, all these theoretical parameters favour the miscibility between DAP and PVP-VA. Melting point depression study (through thermal analysis) and Flory-Huggins theory were utilized for the practical determination of drug-polymer miscibility, where the interaction parameter was positive, suggesting limited miscibility. The obtained thermodynamic phase diagram and Gibbs free energy of mixing plot can provide an indication for the selection of appropriate drug-polymer ratios in stable and metastable zones and the optimum processing temperature required for the preparation of amorphous solid dispersions.

10.
J Pharm Sci ; 112(4): 1020-1031, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36410417

RESUMO

Stereolithography (SLA) 3D printing of pharmaceuticals suffers from the problem of light scattering, which leads to over-curing, resulting in the printing of objects that are non-compliant with design dimensions and the overloading of drugs. To minimize this problem, photoabsorbers such as tartrazine (food grade) can be used to absorb the stray light produced by scattering, leading to unintended photopolymerization. Ghost tablets (i.e., non-erodible inert matrices) were additively manufactured using SLA with varying ratios of polyethylene glycol diacrylate (PEGDA): polyethylene glycol (PEG) 300, along with tartrazine concentrations. The 3D printed ghost tablets containing maximum (0.03%) tartrazine were extremely precise in size and adhered to the nominal value of the metformin hydrochloride content. Resolution analysis reinstated the influence of tartrazine in achieving highly precise objects of even 0.07 mm2 area. Furthermore, 3D printed ghost tablets were characterized using analytical means, and swelling studies. Additionally, ghost tablets were tested for their mechanical robustness using dynamic mechanical and texture analysis, and were able to withstand strains of up to 5.0% without structural failure. The printed ghost tablets displayed a fast metformin hydrochloride release profile, with 93.14% release after 12 h when the PEG 300 ratio was at its maximum. Ghost tablets were also subjected to in vivo X-ray imaging, and the tablets remained intact even after four hours of administration and were eventually excreted in an intact form through fecal excretion.


Assuntos
Tartrazina , Tecnologia Farmacêutica , Liberação Controlada de Fármacos , Tecnologia Farmacêutica/métodos , Polietilenoglicóis/química , Impressão Tridimensional , Comprimidos/química
11.
ACS Chem Neurosci ; 2023 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-37027804

RESUMO

The tricyclic antidepressant amoxapine (AMX) has been reported for a rapid onset of action compared to other cyclic antidepressants. It has very low solubility and bioavailability due to first-pass metabolism. Therefore, we planned to develop solid lipid nanoparticles (SLNs) of AMX using a single emulsification method to increase its solubility and bioavailability. HPLC and LC-MS/MS methods were developed further to quantify AMX in the formulation, plasma, and brain tissue samples. The formulation was studied for entrapment efficiency, loading, and in vitro drug release. Particle size and ζ potential analyses, AFM, SEM, TEM, DSC, and XRD were used for further characterization. In vivo oral pharmacokinetic and brain pharmacokinetic studies were performed using Wistar rats. The entrapment and loading efficiencies of AMX in SLNs were 85.8 ± 3.42 and 4.5 ± 0.45%, respectively. The developed formulation had a mean particle size of 151.5 ± 7.02 nm and a polydispersity index of 0.40 ± 0.11. DSC and XRD results indicated that AMX was incorporated into the nanocarrier system in an amorphous form. SEM, TEM, and AFM studies of AMX-SLNs confirmed the particles' spherical shape and nanoscale size. AMX solubility increased by approx. 2.67 times compared to the pure drug. The developed LC-MS/MS method was successfully applied to the oral and brain pharmacokinetic study of AMX-loaded SLNs in rats. Oral bioavailability was enhanced 1.6 times compared to the pure drug. The peak plasma concentrations of pure AMX and AMX-SLNs were 617.4 ± 137.4 and 1043.5 ± 150.2 (ng/mL), respectively. AMX-SLNs showed more than 5.8 times brain concentration compared to the pure drug. Based on the findings, it appears that utilizing a solid lipid nanoparticle carrier to transport AMX can be a highly effective delivery method with improved pharmacokinetic properties in the brain. This approach may prove valuable for future antidepressant treatment.

12.
Biomater Adv ; 153: 213527, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37418935

RESUMO

Light-based three-dimensional (3D) printing has been under use extensively to fabricate complex geometrical constructs which find a vast application in the fields of drug delivery and tissue engineering fields due to its ability to recapitulate the intricate biological architecture and thus provides avenues to achieve previously unachievable biomedical devices. The inherent problem associated with light-based 3D printing (from a biomedical perspective) is that of light scattering causing inaccurate and defective prints which results in erroneous drug loading in 3D printed dosage forms and can also render the environment of the polymers toxic for the biological cells and tissues. In this regard, an innovative additive comprising of a nature-derived drug-cum-photoabsorber (curcumin) entrapped in naturally derived protein (bovine serum albumin) is envisaged to act as a photoabsorbing system that can improve the printing quality of 3D printed drug delivery formulations (macroporous pills) as well as provide stimuli-responsive release of the same upon oral ingestion. The delivery system was designed to endure the chemically and mechanically hostile gastric environment and deliver the drug in the small intestine to improve absorption. A 3 × 3 grid macroporous pill was designed (specifically to withstand the mechanically hostile gastric environment) and 3D printed using Stereolithography comprising of a resin system including acrylic Acid, PEGDA and PEG 400 along with curcumin loaded BSA nanoparticles (Cu-BSA NPs) as a multifunctional additive and TPO as the photoinitiator. The 3D printed macroporous pills were found to show excellent fidelity to CAD design as evident from the resolution studies. The mechanical performance of the macroporous pills was found to be extremely superior to monolithic pills. The pills found to release curcumin in pH responsive manner with slower release at acidic pH but faster release at intestinal pH due to its similar swelling behavior. Finally, the pills were found to be cytocompatible to mammalian kidney and colon cell lines.


Assuntos
Curcumina , Nanopartículas , Curcumina/farmacologia , Curcumina/uso terapêutico , Impressão Tridimensional , Estereolitografia , Polímeros
13.
Pharmaceutics ; 15(3)2023 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-36986839

RESUMO

Analytical sample preparation techniques are essential for assessing chemicals in various biological matrices. The development of extraction techniques is a modern trend in the bioanalytical sciences. We fabricated customized filaments using hot-melt extrusion techniques followed by fused filament fabrication-mediated 3D printing technology to rapidly prototype sorbents that extract non-steroidal anti-inflammatory drugs from rat plasma for determining pharmacokinetic profiles. The filament was prototyped as a 3D-printed sorbent for extracting small molecules using AffinisolTM, polyvinyl alcohol, and triethyl citrate. The optimized extraction procedure and parameters influencing the sorbent extraction were systematically investigated by the validated LC-MS/MS method. Furthermore, a bioanalytical method was successfully implemented after oral administration to determine the pharmacokinetic profiles of indomethacin and acetaminophen in rat plasma. The Cmax was found to be 0.33 ± 0.04 µg/mL and 27.27 ± 9.9 µg/mL for indomethacin and acetaminophen, respectively, at the maximum time (Tmax) (h) of 0.5-1 h. The mean area under the curve (AUC0-t) for indomethacin was 0.93 ± 0.17 µg h/mL, and for acetaminophen was 32.33± 10.8 µg h/mL. Owing to their newly customizable size and shape, 3D-printed sorbents have opened new opportunities for extracting small molecules from biological matrices in preclinical studies.

14.
Eur J Med Chem ; 252: 115300, 2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-36989813

RESUMO

Breast cancer treatment with PARP-1 inhibitors remains challenging due to emerging toxicities, drug resistance, and unaffordable costs of treatment options. How do we invent strategies to design better anti-cancer drugs? A part of the answer is in optimized compound properties, desirability functions, and modern computational drug design methods that drive selectivity and toxicity and have not been reviewed for PARP-1 inhibitors. Nonetheless, comparisons of these compound properties for PARP-1 inhibitors are not available in the literature. In this review, we analyze the physchem, PKPD space to identify inherent desirability functions characteristic of approved drugs that can be valuable for the design of better candidates. Recent literature utilizing ligand, structure-based drug design strategies and matched molecular pair analysis (MMPA) for the discovery of novel PARP-1 inhibitors are also reviewed. Thus, this perspective provides valuable insights into the medchem and multiparameter optimization of PARP-1 inhibitors that might be useful to other medicinal chemists.


Assuntos
Antineoplásicos , Inibidores de Poli(ADP-Ribose) Polimerases , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Desenho de Fármacos , Antineoplásicos/farmacologia
15.
J Ethnopharmacol ; 303: 115992, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36509261

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Alternanthera brasiliana L. is a flowering plant belonging to the family Amaranthaceae and is popularly known as "penicillin". It is used in folk medicine to treat infections, coughs, wound healing, and inflammatory diseases. AIM OF THE STUDY: We investigated the effect of Alternanthera brasiliana L. leaves hydroalcoholic extract (AB) against oxidative stress, inflammation, and fibrotic changes in an experimental model of carbon tetrachloride (CCl4)-induced liver injury and fibrosis in mice. MATERIALS AND METHODS: Thirty-six male Balb/C mice were randomized into five groups: normal control, AB control, CCl4 control, CCl4 + AB-200 mg/kg, and CCl4 + AB-400 mg/kg. In mice, liver injury was induced by intraperitoneal injection of CCl4 (20% in corn oil, 5 ml/kg body weight) thrice a week for six consecutive weeks. AB extract at two doses (200 mg/kg and 400 mg/kg body weight) was administered orally for six consecutive weeks. Liver injury-related serum markers (ALT, AST, ALP), antioxidants (GSH, GST, SOD, and vitamin C), pro-inflammatory cytokines including tumor necrosis factor-α (TNF-α), interleukin (IL)-1ß, and IL-18, ultrasonographic and histological alterations, proteins of matrix metalloproteinases (MMPs) and tissue inhibitors of matrix metalloproteinase-1 (TIMP-1), nuclear factor-κB (p65) (NF-κB), nod-like receptor protein 3 (NLRP3), and TGF-ß/Smad signaling were accessed. LC-Q-TOF-MS/MS analysis of AB was performed. RESULTS: AB treatment significantly decreased the CCl4-induced rise in serum ALT, AST, and ALP activities and improved the histological alterations. Compared with the CCl4-treated group, treatment with AB significantly restored the hepatic antioxidants and reduced the pro-inflammatory cytokines in the liver. The antioxidant activity of AB may be attributed to its terpenoid constituents, which was confirmed by LC-Q-TOF-MS/MS analysis. The CCl4-induced rise in expression of MMP-2 and MMP-9 and decrease in TIMP-1 were markedly restored in the AB-treated groups. Further findings revealed a significant reduction in the protein levels of phospho-NF-κB (p65), NLRP3, TGF-ß, pSmad2/3, collagen I, and α-smooth muscle actin (α-SMA) in the AB treatment groups. CONCLUSIONS: The hepatoprotective effect of AB may be attributed to the high content of terpenoid compounds and alleviates liver injury and associated fibrotic changes through modulating MMPs, NF-κB (p65), and the TGF-ß/Smad axis.


Assuntos
Antioxidantes , Doença Hepática Crônica Induzida por Substâncias e Drogas , Camundongos , Animais , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Antioxidantes/metabolismo , Fator de Crescimento Transformador beta/metabolismo , NF-kappa B/metabolismo , Tetracloreto de Carbono/efeitos adversos , Doença Hepática Crônica Induzida por Substâncias e Drogas/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Espectrometria de Massas em Tandem , Inibidor Tecidual de Metaloproteinase-1/metabolismo , Fígado , Cirrose Hepática/tratamento farmacológico , Citocinas/metabolismo , Estresse Oxidativo , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Extratos Vegetais/metabolismo , Peso Corporal
16.
J Chromatogr A ; 1708: 464358, 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37708671

RESUMO

Lakadong turmeric has been outlined for its high content of curcuminoids across the globe. Three significant molecular markers are widely present in turmeric viz, curcumin, desmethoxycurcumin, and bisdemethoxycurcumin, and they are present very high amount in Lakadong turmeric. Curcuminoids have been reported for structural and spectrum similarity of 3 to 4 nm (432, 434, and 436 nm, respectively). Current purification methods are based on recrystallisation where it is difficult to get highly pure material and preparative methods associated with tedious separation with high cost. Lakadong turmeric has not been explored commercially since long time. No reports are available in the literature with highly pure reference materials with in-depth characterization data and purity assessment. Curcumin, desmethoxycurcumin, and bisdemethoxycurcumin were characterized using different analytical techniques viz, UV-Visible Spectroscopy, Fourier Transform Infrared Spectroscopy (FT-IR), Differential Scanning Calorimetry (DSC), Thermogravimetric Analysis (TGA), Proton Nuclear Magnetic Resonance (1HNMR), Carbon-13 Nuclear Magnetic Resonance (13CNMR), High-Resolution Mass Spectrometry (HR-MS) and Inductive Coupled Plasma Mass Spectrometry (ICP-MS). Purified 3 markers has shown High-Performance Liquid Chromatography-Diode Array Detector (HPLC-DAD) purity more than 99.5%. DSC the melting peaks of curcumin, desmethoxycurcumin and bisdemethoxycurcumin were observed at 168 °C, 165 °C, and 210 °C, respectively. These plant-based markers have high commercial potential as reference material for routine Quality Assurance and Quality Control (QAQC) in herbal industries.


Assuntos
Curcumina , Curcuma , Espectroscopia de Infravermelho com Transformada de Fourier , Diarileptanoides , Índia
17.
Antioxidants (Basel) ; 12(5)2023 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-37237918

RESUMO

Nephropathy is the most prevalent microvascular disorder in diabetes mellitus. Oxidative stress and inflammatory cascade provoked by the persistent hyperglycemic milieu play integral roles in the aggravation of renal injury and fibrosis. We explored the impact of biochanin A (BCA), an isoflavonoid, on the inflammatory response, nod-like receptor protein 3 (NLRP3) inflammasome activation, oxidative stress, and fibrosis in diabetic kidneys. A high-fat-diet/streptozotocin (HFD/STZ)-induced experimental model of diabetic nephropathy (DN) was established in Sprague Dawley rats, and in vitro studies were performed in high-glucose-induced renal tubular epithelial (NRK-52E) cells. Persistent hyperglycemia in diabetic rats was manifested by perturbation of renal function, marked histological alterations, and oxidative and inflammatory renal damage. Therapeutic intervention of BCA mitigated histological changes, improved renal function and antioxidant capacity, and suppressed phosphorylation of nuclear factor-kappa B (NF-κB) and nuclear factor-kappa B inhibitor alpha (IκBα) proteins. Our in vitro data reveal excessive superoxide generation, apoptosis, and altered mitochondrial membrane potential in NRK-52E cells that were cultured in a high-glucose (HG) environment were subsided by BCA intervention. Meanwhile, the upregulated expressions of NLRP3 and its associated proteins, the pyroptosis-indicative protein gasdermin-D (GSDMD) in the kidneys, and HG-stimulated NRK-52E cells were significantly ameliorated by BCA treatment. Additionally, BCA blunted transforming growth factor (TGF)-ß/Smad signaling and production of collagen I, collagen III, fibronectin, and alfa-smooth muscle actin (α-SMA) in diabetic kidneys. Our results indicate the plausible role of BCA in attenuating DN, presumably through modulation of the apoptotic cascade in renal tubular epithelial cells and the NF-κB/NLRP3 axis.

18.
J Vector Borne Dis ; 49(1): 19-22, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22585238

RESUMO

BACKGROUND: In the past 60 years, antibiotics have been critical in the fight against infectious diseases caused by bacteria and other microbes. Development of resistance to the antibiotics is emerging as a major public health issue which has resulted in the search for new antibiotics in order to maintain a pool of effective drugs at all times. Currently, there is a great interest in cationic peptides as antibiotics. These are reported to destroy the host cell membrane rather interacting with the other cell components, which may not face emergence of resistance. In mosquitoes, peptides like cecropin, defensin and gambicin reported to have inhibitory effect on bacteria, fungi and parasites. These peptides are well-characterized at both the biochemical and molecular level from Anopheles and Culex species, yet their 3D structures were not reported. METHODS: Defensin, cecropin and gambicin immune peptides of Culex pipiens was characterised to have antiparasitic, antibacterial and antifungal activities. Since the crystal structure of defensin, cecropin and gambicin are not yet available their 3D structures were determined using homology modeling and Rosetta fragment insertion methods and were validated. RESULTS: Stereo chemical evaluation indicated that defensin and gambicin showed that 100% residues of constructed model lie in the most favoured and allowed regions. Cecropin iso-forms A and B showed 100% while C showed 97.6% residues that lie in most favoured and allowed regions, which indicated quality models. CONCLUSION: Predicted model provide insight into their structure and aid in the development of novel antibiotic peptides.


Assuntos
Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/farmacologia , Bactérias/efeitos dos fármacos , Culex/química , Fungos/efeitos dos fármacos , Parasitos/efeitos dos fármacos , Animais , Cecropinas/química , Cecropinas/farmacologia , Simulação por Computador , Defensinas/química , Defensinas/farmacologia , Proteínas de Insetos/química , Proteínas de Insetos/farmacologia , Modelos Moleculares , Conformação Proteica , Homologia de Sequência de Aminoácidos
19.
Anal Methods ; 14(8): 834-842, 2022 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-35156972

RESUMO

Ultra-performance liquid chromatography electrospray ionization tandem mass spectrometry (UPLC/ESI/MS/MS) for the concomitant quantification of active plant constituents, namely quercetin and piperine, in rat plasma was developed and validated to assess pharmacokinetics after a single oral administration. Liquid-liquid extraction technique with ethyl acetate and n-hexane (1 : 1) was used, and fisetin was added as an internal standard (IS). Effective chromatographic separation of quercetin, piperine and IS was executed on a Waters Acquity BEH C18 column (50.0 mm × 2.1 mm, 1.7 µm) using formic acid both (0.1% w/v) in water (A) and acetonitrile (B) as the mobile phase in gradient mode. For detection purposes, positive electrospray ionization (ESI) mode was used with multiple reaction monitoring (MRM) mode for estimation using [M + H]+ fragment ions m/z 303.04 → 152.9 for quercetin, 286.12 → 201.04 for piperine and 287.01 → 136.93 for IS. The method was linear over the calibration range of 0.1-200 ng mL-1. The lower limit of quantification (LLOQ) of quercetin and piperine was obtained as 0.1 ng mL-1 in rat plasma, along with negligible matrix effect and acceptable stability. Furthermore, the bioanalytical method was successfully implemented to determine the pharmacokinetic profiles of quercetin-and piperine-enriched nanostructured lipid carriers (NLCs) in rat plasma after oral administration. The enhancement in the oral bioavailability of quercetin and piperine was 20.72 and 4.67 fold, respectively, compared to their native pristine dispersions. Future exploration of the concentrations of these active constituents in human plasma and organs is feasible using this sensitive, validated UPLC/ESI/MS/MS method.


Assuntos
Compostos Fitoquímicos/sangue , Administração Oral , Animais , Cromatografia Líquida de Alta Pressão/métodos , Ratos , Espectrometria de Massas em Tandem/métodos
20.
J Phys Chem B ; 126(47): 9737-9747, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36384294

RESUMO

Bacterial cytochromes P450 BM3 (CYP450 BM3) catalyze reactions of industrial importance. Despite many successful biotransformations, robust (re)design for novel applications remains challenging. Rational design and evolutionary approaches are not always successful, highlighting a lack of complete understanding of the mechanisms of electron transfer (ET) modulations. Thus, the full potential of CYP450 reactions remains under-exploited. In this work, we report the first molecular dynamics (MD)-based explicit prediction of BM3 ET parameters (reorganization energies; λ and ET free energies; ΔG°), and log ET rates (log kET) using the Marcus theory. Overall, the calculated ET rates for the BM3 wild-type (WT), mutants (F393 and L86), ligand-bound state, and ion concentrations agree well with experimental data. In ligand-free (LF) BM3, mutations modulate kET via ET ΔG°. Simulations show that the experimental ET rate enhancement is due to increased driving force (more negative ΔG°) upon ligation. This increase is related to the protein reorganization required to accommodate the ligand in the binding pocket rather than binding interactions with the ligand. Our methodology (CYPWare 1.0) automates all the stages of the MD simulation step-up, energy calculations, and estimation of ET parameters. CYPWare 1.0 and this work thus represent an important advancement in the CYP450 ET rate predictions, which has the potential to guide the redesign of ET enzymes. This program and a Web tool are available on GitHub for academic research.


Assuntos
Sistema Enzimático do Citocromo P-450 , Elétrons , Transporte de Elétrons , Simulação de Dinâmica Molecular , Catálise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA