Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
J Biol Chem ; 287(22): 18730-7, 2012 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-22493481

RESUMO

The chromoshadow domain (CSD) of heterochromatin protein 1 (HP1) was recently shown to contribute to chromatin binding and transcriptional regulation through interaction with histone H3. Here, we demonstrate the structural basis of this interaction for the CSD of HP1α. This mode of H3 binding is dependent on dimerization of the CSD and recognition of a PxVxL-like motif, as for other CSD partners. NMR chemical shift mapping showed that the H3 residues that mediate the CSD interaction occur in and adjacent to the αN helix just within the nucleosome core. Access to the binding region would require some degree of unwrapping of the DNA near the nucleosomal DNA entry/exit site.


Assuntos
Heterocromatina/metabolismo , Histonas/metabolismo , Sequência de Aminoácidos , Homólogo 5 da Proteína Cromobox , Dimerização , Heterocromatina/química , Humanos , Modelos Moleculares , Dados de Sequência Molecular
2.
J Biol Chem ; 286(2): 1196-203, 2011 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-21047798

RESUMO

Chromatin-modifying complexes such as the NuRD complex are recruited to particular genomic sites by gene-specific nuclear factors. Overall, however, little is known about the molecular basis for these interactions. Here, we present the 1.9 Å resolution crystal structure of the NuRD subunit RbAp48 bound to the 15 N-terminal amino acids of the GATA-1 cofactor FOG-1. The FOG-1 peptide contacts a negatively charged binding pocket on top of the RbAp48 ß-propeller that is distinct from the binding surface used by RpAp48 to contact histone H4. We further show that RbAp48 interacts with the NuRD subunit MTA-1 via a surface that is distinct from its FOG-binding pocket, providing a first glimpse into the way in which NuRD assembly facilitates interactions with cofactors. Our RbAp48·FOG-1 structure provides insight into the molecular determinants of FOG-1-dependent association with the NuRD complex and into the links between transcription regulation and nucleosome remodeling.


Assuntos
Histona Desacetilases , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase , Proteínas Nucleares , Proteínas Repressoras , Proteína 4 de Ligação ao Retinoblastoma , Fatores de Transcrição , Transcrição Gênica/fisiologia , Sequência de Aminoácidos , Animais , Sítios de Ligação/fisiologia , Células Cultivadas , Sequência Conservada , Cristalografia por Raios X , Histona Desacetilases/química , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Histonas/química , Histonas/genética , Histonas/metabolismo , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/química , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/genética , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/metabolismo , Proteínas dos Microfilamentos/química , Proteínas dos Microfilamentos/metabolismo , Dados de Sequência Molecular , Proteínas Nucleares/química , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Domínios e Motivos de Interação entre Proteínas/fisiologia , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Repressoras/química , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Proteína 4 de Ligação ao Retinoblastoma/química , Proteína 4 de Ligação ao Retinoblastoma/genética , Proteína 4 de Ligação ao Retinoblastoma/metabolismo , Spodoptera , Transativadores , Fatores de Transcrição/química , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
3.
Nucleic Acids Res ; 36(9): e51, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18420658

RESUMO

We describe a new method, which identifies protein fragments for soluble expression in Escherichia coli from a randomly fragmented gene library. Inhibition of E. coli dihydrofolate reductase (DHFR) by trimethoprim (TMP) prevents growth, but this can be relieved by murine DHFR (mDHFR). Bacterial strains expressing mDHFR fusions with the soluble proteins green fluroscent protein (GFP) or EphB2 (SAM domain) displayed markedly increased growth rates with TMP compared to strains expressing insoluble EphB2 (TK domain) or ketosteroid isomerase (KSI). Therefore, mDHFR is affected by the solubility of fusion partners and can act as a reporter of soluble protein expression. Random fragment libraries of the transcription factor Fli1 were generated by deoxyuridine incorporation and endonuclease V cleavage. The fragments were cloned upstream of mDHFR and TMP resistant clones expressing soluble protein were identified. These were found to cluster around the DNA binding ETS domain. A selected Fli1 fragment was expressed independently of mDHFR and was judged to be correctly folded by various biophysical methods including NMR. Soluble fragments of the cell-surface receptor Pecam1 were also identified. This genetic selection method was shown to generate expression clones useful for both structural studies and antibody generation and does not require a priori knowledge of domain architecture.


Assuntos
Escherichia coli/genética , Biblioteca Gênica , Engenharia de Proteínas/métodos , Proteínas Recombinantes de Fusão/química , Tetra-Hidrofolato Desidrogenase/genética , Animais , Anticorpos Monoclonais/imunologia , Linhagem Celular Tumoral , Camundongos , Biblioteca de Peptídeos , Molécula-1 de Adesão Celular Endotelial a Plaquetas/genética , Molécula-1 de Adesão Celular Endotelial a Plaquetas/imunologia , Estrutura Terciária de Proteína , Proteína Proto-Oncogênica c-fli-1/genética , Proteínas Recombinantes de Fusão/análise , Proteínas Recombinantes de Fusão/imunologia , Solubilidade
4.
Structure ; 16(7): 1077-85, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18571423

RESUMO

RbAp46 and RbAp48 (pRB-associated proteins p46 and p48, also known as RBBP7 and RBBP4, respectively) are highly homologous histone chaperones that play key roles in establishing and maintaining chromatin structure. We report here the crystal structure of human RbAp46 bound to histone H4. RbAp46 folds into a seven-bladed beta propeller structure and binds histone H4 in a groove formed between an N-terminal alpha helix and an extended loop inserted into blade six. Surprisingly, histone H4 adopts a different conformation when interacting with RbAp46 than it does in either the nucleosome or in the complex with ASF1, another histone chaperone. Our structural and biochemical results suggest that when a histone H3/H4 dimer (or tetramer) binds to RbAp46 or RbAp48, helix 1 of histone H4 unfolds to interact with the histone chaperone. We discuss the implications of our findings for the assembly and function of RbAp46 and RbAp48 complexes.


Assuntos
Proteínas de Transporte/química , Histonas/química , Chaperonas Moleculares/química , Proteínas Nucleares/química , Sequência de Aminoácidos , Sítios de Ligação , Proteínas de Transporte/metabolismo , Histonas/metabolismo , Humanos , Modelos Moleculares , Chaperonas Moleculares/metabolismo , Dados de Sequência Molecular , Proteínas Nucleares/metabolismo , Ligação Proteica , Proteína 7 de Ligação ao Retinoblastoma , Homologia de Sequência de Aminoácidos
5.
Nat Struct Mol Biol ; 20(1): 29-35, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23178455

RESUMO

The mechanisms by which histones are disassembled and reassembled into nucleosomes and chromatin structure during DNA replication, repair and transcription are poorly understood. A better understanding of the processes involved is, however, crucial if we are to understand whether and how histone variants and post-translationally modified histones are inherited in an epigenetic manner. To this end we have studied the interaction of the histone H3-H4 complex with the human retinoblastoma-associated protein RbAp48 and their exchange with a second histone chaperone, anti-silencing function protein 1 (ASF1). Exchange of histones H3-H4 between these two histone chaperones has a central role in the assembly of new nucleosomes, and we show here that the H3-H4 complex has an unexpected structural plasticity, which is important for this exchange.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Replicação do DNA , Chaperonas de Histonas/metabolismo , Histonas/química , Histonas/metabolismo , Proteína 4 de Ligação ao Retinoblastoma/metabolismo , Animais , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Cromatina/metabolismo , Montagem e Desmontagem da Cromatina , DNA/metabolismo , Chaperonas de Histonas/química , Histonas/genética , Humanos , Nucleossomos/metabolismo , Ligação Proteica , Multimerização Proteica , Proteína 4 de Ligação ao Retinoblastoma/química
7.
PLoS One ; 2(4): e386, 2007 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-17440621

RESUMO

In order to gain a more global view of the activity of histone demethylases, we report here genome-wide studies of the fission yeast SWIRM and polyamine oxidase (PAO) domain homologues of mammalian LSD1. Consistent with previous work we find that the two S. pombe proteins, which we name Swm1 and Swm2 (after SWIRM1 and SWIRM2), associate together in a complex. However, we find that this complex specifically demethylates lysine 9 in histone H3 (H3K9) and both up- and down-regulates expression of different groups of genes. Using chromatin-immunoprecipitation, to isolate fragments of chromatin containing either H3K4me2 or H3K9me2, and DNA microarray analysis (ChIP-chip), we have studied genome-wide changes in patterns of histone methylation, and their correlation with gene expression, upon deletion of the swm1(+) gene. Using hyper-geometric probability comparisons we uncover genetic links between lysine-specific demethylases, the histone deacetylase Clr6, and the chromatin remodeller Hrp1. The data presented here demonstrate that in fission yeast the SWIRM/PAO domain proteins Swm1 and Swm2 are associated in complexes that can remove methyl groups from lysine 9 methylated histone H3. In vitro, we show that bacterially expressed Swm1 also possesses lysine 9 demethylase activity. In vivo, loss of Swm1 increases the global levels of both H3K9me2 and H3K4me2. A significant accumulation of H3K4me2 is observed at genes that are up-regulated in a swm1 deletion strain. In addition, H3K9me2 accumulates at some genes known to be direct Swm1/2 targets that are down-regulated in the swm1Delta strain. The in vivo data indicate that Swm1 acts in concert with the HDAC Clr6 and the chromatin remodeller Hrp1 to repress gene expression. In addition, our in vitro analyses suggest that the H3K9 demethylase activity requires an unidentified post-translational modification to allow it to act. Thus, our results highlight complex interactions between histone demethylase, deacetylase and chromatin remodelling activities in the regulation of gene expression.


Assuntos
Estudo de Associação Genômica Ampla , Histona Desmetilases/metabolismo , Histonas/metabolismo , Schizosaccharomyces/metabolismo , Biocatálise , Imunoprecipitação da Cromatina , Regulação para Baixo , Humanos , Metilação , Processamento de Proteína Pós-Traducional , Proteínas de Schizosaccharomyces pombe/metabolismo , Regulação para Cima
8.
J Biol Chem ; 280(37): 32326-31, 2005 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-15964847

RESUMO

We report here the structure of the putative chromo domain from MOF, a member of the MYST family of histone acetyltransferases that acetylates histone H4 at Lys-16 and is part of the dosage compensation complex in Drosophila. We found that the structure of this domain is a beta-barrel that is distinct from the alpha + beta fold of the canonical chromo domain. Despite the differences, there are similarities that support an evolutionary relationship between the two domains, and we propose the name "chromo barrel." The chromo barrel domains may be divided into two groups, MSL3-like and MOF-like, on the basis of whether a group of conserved aromatic residues is present or not. The structure suggests that, although the MOF-like domains may have a role in RNA binding, the MSL3-like domains could instead bind methylated residues. The MOF chromo barrel shares a common fold with other chromatin-associated modules, including the MBT-like repeat, Tudor, and PWWP domains. This structural similarity suggests a probable evolutionary pathway from these other modules to the canonical chromo domains (or vice versa) with the chromo barrel domain representing an intermediate structure.


Assuntos
Acetiltransferases/química , Sequência de Aminoácidos , Animais , Cromatina/química , DNA/química , Drosophila , Evolução Molecular , Histona Acetiltransferases , Histonas/química , Lisina/química , Espectroscopia de Ressonância Magnética , Modelos Biológicos , Modelos Moleculares , Dados de Sequência Molecular , Peptídeos/química , Ligação Proteica , Conformação Proteica , Dobramento de Proteína , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , RNA/química , Homologia de Sequência de Aminoácidos , Transcrição Gênica
9.
EMBO J ; 23(3): 489-99, 2004 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-14765118

RESUMO

HP1 family proteins are adaptor molecules, containing two related chromo domains that are required for chromatin packaging and gene silencing. Here we present the structure of the chromo shadow domain from mouse HP1beta bound to a peptide containing a consensus PXVXL motif found in many HP1 binding partners. The shadow domain exhibits a novel mode of peptide recognition, where the peptide binds across the dimer interface, sandwiched in a beta-sheet between strands from each monomer. The structure allows us to predict which other shadow domains bind similar PXVXL motif-containing peptides and provides a framework for predicting the sequence specificity of the others. We show that targeting of HP1beta to heterochromatin requires shadow domain interactions with PXVXL-containing proteins in addition to chromo domain recognition of Lys-9-methylated histone H3. Interestingly, it also appears to require the simultaneous recognition of two Lys-9-methylated histone H3 molecules. This finding implies a further complexity to the histone code for regulation of chromatin structure and suggests how binding of HP1 family proteins may lead to its condensation.


Assuntos
Proteínas Cromossômicas não Histona/metabolismo , Heterocromatina/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Linhagem Celular , Homólogo 5 da Proteína Cromobox , Proteínas Cromossômicas não Histona/química , Histonas/metabolismo , Humanos , Camundongos , Dados de Sequência Molecular , Ressonância Magnética Nuclear Biomolecular , Ligação Proteica , Estrutura Terciária de Proteína
10.
Nature ; 416(6876): 103-7, 2002 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-11882902

RESUMO

Specific modifications to histones are essential epigenetic markers---heritable changes in gene expression that do not affect the DNA sequence. Methylation of lysine 9 in histone H3 is recognized by heterochromatin protein 1 (HP1), which directs the binding of other proteins to control chromatin structure and gene expression. Here we show that HP1 uses an induced-fit mechanism for recognition of this modification, as revealed by the structure of its chromodomain bound to a histone H3 peptide dimethylated at Nzeta of lysine 9. The binding pocket for the N-methyl groups is provided by three aromatic side chains, Tyr21, Trp42 and Phe45, which reside in two regions that become ordered on binding of the peptide. The side chain of Lys9 is almost fully extended and surrounded by residues that are conserved in many other chromodomains. The QTAR peptide sequence preceding Lys9 makes most of the additional interactions with the chromodomain, with HP1 residues Val23, Leu40, Trp42, Leu58 and Cys60 appearing to be a major determinant of specificity by binding the key buried Ala7. These findings predict which other chromodomains will bind methylated proteins and suggest a motif that they recognize.


Assuntos
Proteínas Cromossômicas não Histona/química , Histonas/química , Lisina/química , Sequência de Aminoácidos , Animais , Homólogo 5 da Proteína Cromobox , Proteínas Cromossômicas não Histona/metabolismo , Histonas/metabolismo , Lisina/metabolismo , Espectroscopia de Ressonância Magnética , Camundongos , Modelos Moleculares , Dados de Sequência Molecular , Ligação Proteica , Conformação Proteica , Proteínas Recombinantes de Fusão/química , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA