Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 109(11): 4257-62, 2012 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-22371576

RESUMO

Noonan syndrome (NS), a genetic disease caused in half of cases by activating mutations of the tyrosine phosphatase SHP2 (PTPN11), is characterized by congenital cardiopathies, facial dysmorphic features, and short stature. How mutated SHP2 induces growth retardation remains poorly understood. We report here that early postnatal growth delay is associated with low levels of insulin-like growth factor 1 (IGF-1) in a mouse model of NS expressing the D61G mutant of SHP2. Conversely, inhibition of SHP2 expression in growth hormone (GH)-responsive cell lines results in increased IGF-1 release upon GH stimulation. SHP2-deficient cells display decreased ERK1/2 phosphorylation and rat sarcoma (RAS) activation in response to GH, whereas expression of NS-associated SHP2 mutants results in ERK1/2 hyperactivation in vitro and in vivo. RAS/ERK1/2 inhibition in SHP2-deficient cells correlates with impaired dephosphorylation of the adaptor Grb2-associated binder-1 (GAB1) on its RAS GTPase-activating protein (RASGAP) binding sites and is rescued by interfering with RASGAP recruitment or function. We demonstrate that inhibition of ERK1/2 activation results in an increase of IGF-1 levels in vitro and in vivo, which is associated with significant growth improvement in NS mice. In conclusion, NS-causing SHP2 mutants inhibit GH-induced IGF-1 release through RAS/ERK1/2 hyperactivation, a mechanism that could contribute to growth retardation. This finding suggests that, in addition to its previously shown beneficial effect on NS-linked cardiac and craniofacial defects, RAS/ERK1/2 modulation could also alleviate the short stature phenotype in NS caused by PTPN11 mutations.


Assuntos
MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Hormônio do Crescimento/farmacologia , Fator de Crescimento Insulin-Like I/metabolismo , Mutação/genética , Síndrome de Noonan/enzimologia , Proteína Tirosina Fosfatase não Receptora Tipo 11/genética , Proteínas Adaptadoras de Transdução de Sinal , Animais , Animais Recém-Nascidos , Sítios de Ligação , Biometria , Ativação Enzimática/efeitos dos fármacos , Fator de Crescimento Insulin-Like I/biossíntese , Janus Quinase 2/metabolismo , Camundongos , Quinases de Proteína Quinase Ativadas por Mitógeno/antagonistas & inibidores , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Síndrome de Noonan/sangue , Síndrome de Noonan/genética , Fosfatidilinositol 3-Quinases/metabolismo , Fosfoproteínas/metabolismo , Fosforilação/efeitos dos fármacos , Proteína Tirosina Fosfatase não Receptora Tipo 11/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Fator de Transcrição STAT5/metabolismo , Proteínas ras/metabolismo
2.
Bone ; 49(3): 395-403, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21569876

RESUMO

Lysophosphatidic acid (LPA) is a lipid mediator that acts in paracrine systems via interaction with a subset of G protein-coupled receptors (GPCRs). LPA promotes cell growth and differentiation, and has been shown to be implicated in a variety of developmental and pathophysiological processes. At least 6 LPA GPCRs have been identified to date: LPA1-LPA6. Several studies have suggested that local production of LPA by tissues and cells contributes to paracrine regulation, and a complex interplay between LPA and its receptors, LPA1 and LPA4, is believed to be involved in the regulation of bone cell activity. In particular, LPA1 may activate both osteoblasts and osteoclasts. However, its role has not as yet been examined with regard to the overall status of bone in vivo. We attempted to clarify this role by defining the bone phenotype of LPA1((-/-)) mice. These mice demonstrated significant bone defects and low bone mass, indicating that LPA1 plays an important role in osteogenesis. The LPA1((-/-)) mice also presented growth and sternal and costal abnormalities, which highlights the specific roles of LPA1 during bone development. Microcomputed tomography and histological analysis demonstrated osteoporosis in the trabecular and cortical bone of LPA1((-/-)) mice. Finally, bone marrow mesenchymal progenitors from these mice displayed decreased osteoblastic differentiation. These results suggest that LPA1 strongly influences bone development both qualitatively and quantitatively and that, in vivo, its absence results in decreased osteogenesis with no clear modification of osteoclasis. They open perspectives for a better understanding of the role of the LPA/LPA1 paracrine pathway in bone pathophysiology.


Assuntos
Osso e Ossos/anormalidades , Osso e Ossos/fisiologia , Diferenciação Celular/fisiologia , Osteogênese/fisiologia , Isoformas de Proteínas/metabolismo , Receptores de Ácidos Lisofosfatídicos/metabolismo , Animais , Biomarcadores/metabolismo , Densidade Óssea , Células da Medula Óssea/citologia , Células da Medula Óssea/fisiologia , Osso e Ossos/anatomia & histologia , Osso e Ossos/diagnóstico por imagem , Lisofosfolipídeos/metabolismo , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Estado Nutricional , Osteoblastos/citologia , Osteoblastos/fisiologia , Osteoclastos/citologia , Osteoclastos/fisiologia , Isoformas de Proteínas/genética , Receptores de Ácidos Lisofosfatídicos/genética , Microtomografia por Raio-X
3.
J Biol Chem ; 279(10): 9270-7, 2004 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-14630935

RESUMO

Intestinal cell growth and differentiation are tightly regulated by growth factors and extracellular matrix components along the crypt-villus axis. We previously described enterophilin-1 (Ent-1) as a new intestinal protein associated with growth arrest and enterocyte differentiation. Ent-1 interacted with sorting nexin 1 and decreased cell surface epidermal growth factor receptor. Because beta(1) integrins are mostly found in vivo in the proliferative crypt cells, we investigated the role of Ent-1 in the fate of beta(1) integrin subunits. In undifferentiated intestinal Caco-2 cells, overexpression of Ent-1 induces a marked decrease of alpha(5)beta(1) integrin pools, whereas alpha(2)beta(1) integrin is weakly affected. Conversely, overexpression of sorting nexin 1 has no effect on integrin levels despite its ability to interact with Ent-1. Interestingly, we identified focal adhesion kinase as a new Ent-1 partner using yeast two-hybrid screening and co-precipitation experiments. Furthermore by confocal microscopy, we observed that Ent-1 and beta(1) integrins partly co-localize on vesicular structures, suggesting a role for Ent-1 in integrin trafficking. Because focal adhesion kinase is able to bind both Ent-1 and beta(1) integrins, the kinase might act as a molecular bridge between the two proteins. Altogether, these results support a role of Ent-1 in regulating beta(1) integrin expression that could favor intestinal differentiation.


Assuntos
Proteínas de Transporte/metabolismo , Integrina beta1/biossíntese , Proteínas Tirosina Quinases/metabolismo , Proteínas de Transporte Vesicular , Células CACO-2 , Proteínas de Transporte/biossíntese , Proteínas de Transporte/genética , Diferenciação Celular/genética , Regulação para Baixo , Quinase 1 de Adesão Focal , Proteína-Tirosina Quinases de Adesão Focal , Regulação da Expressão Gênica , Células HeLa , Humanos , Integrina beta1/genética , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA