Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Bioorg Med Chem ; 92: 117423, 2023 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-37531921

RESUMO

Hematopoietic progenitor kinase 1 (HPK1) is regarded as a highly validated target in pre-clinical immune oncology. HPK1 has been described as regulating multiple critical signaling pathway in both adaptive and innate cells. In support of this role, HPK1 KO T cells show enhanced sensitivity to TCR activation and HPK1 KO mice display enhanced anti-tumor activity. Taken together, inhibition of HPK1 has the potential to induce enhanced anti-tumor immune response. Herein, we described the discovery of highly potent HPK1 inhibitors starting form a weak HTS hit. Using a structure-based drug design, HPK1 inhibitors exhibiting excellent cellular single-digit nanomolar potency in both proximal (pSLP76) and distal (IL-2) biomarkers along with sustained elevation of IL-2 cytokine secretion were discovered.


Assuntos
Interleucina-2 , Receptores de Antígenos de Linfócitos T , Camundongos , Animais , Chlorocebus aethiops , Proteínas Serina-Treonina Quinases , Células COS
2.
J Pharmacol Exp Ther ; 376(3): 397-409, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33328334

RESUMO

Toll-like receptor (TLR) 7 and TLR8 are transmembrane receptors that recognize single-stranded RNA. Activation of these receptors results in immune cell stimulation and inflammatory cytokine production, which is normally a protective host response. However, aberrant activation of TLR7/8 is potentially pathogenic and linked to progression of certain autoimmune diseases such as lupus. Thus, we hypothesize that an inhibitor that blocks TLR7/8 would be an effective therapeutic treatment. Prior efforts to develop inhibitors of TLR7/8 have been largely unsuccessful as a result of the challenge of producing a small-molecule inhibitor for these difficult targets. Here, we report the characterization of M5049 and compound 2, molecules which were discovered in a medicinal chemistry campaign to produce dual TLR7/8 inhibitors with drug-like properties. Both compounds showed potent and selective activity in a range of cellular assays for inhibition of TLR7/8 and block synthetic ligands and natural endogenous RNA ligands such as microRNA and Alu RNA. M5049 was found to be potent in vivo as TLR7/8 inhibition efficaciously treated disease in several murine lupus models and, interestingly, was efficacious in a disease context in which TLR7/8 activity has not previously been considered a primary disease driver. Furthermore, M5049 had greater potency in disease models than expected based on its in vitro potency and pharmacokinetic/pharmacodynamic properties. Because of its preferential accumulation in tissues, and ability to block multiple TLR7/8 RNA ligands, M5049 may be efficacious in treating autoimmunity and has the potential to provide benefit to a variety of patients with varying disease pathogenesis. SIGNIFICANCE STATEMENT: This study reports discovery of a novel toll-like receptor (TLR) 7 and TLR8 inhibitor (M5049); characterizes its binding mode, potency/selectivity, and pharmacokinetic and pharmacodynamic properties; and demonstrates its potential for treating autoimmune diseases in two mouse lupus models. TLR7/8 inhibition is unique in that it may block both innate and adaptive autoimmunity; thus, this study suggests that M5049 has the potential to benefit patients with autoimmune diseases.


Assuntos
Autoimunidade/efeitos dos fármacos , Descoberta de Drogas , Receptor 7 Toll-Like/antagonistas & inibidores , Receptor 8 Toll-Like/antagonistas & inibidores , Animais , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Células HEK293 , Humanos , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Modelos Moleculares , Conformação Proteica , Receptor 7 Toll-Like/química , Receptor 7 Toll-Like/metabolismo , Receptor 8 Toll-Like/química , Receptor 8 Toll-Like/metabolismo
3.
J Chem Inf Model ; 60(11): 5457-5474, 2020 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-32813975

RESUMO

Accurate ranking of compounds with regards to their binding affinity to a protein using computational methods is of great interest to pharmaceutical research. Physics-based free energy calculations are regarded as the most rigorous way to estimate binding affinity. In recent years, many retrospective studies carried out both in academia and industry have demonstrated its potential. Here, we present the results of large-scale prospective application of the FEP+ method in active drug discovery projects in an industry setting at Merck KGaA, Darmstadt, Germany. We compare these prospective data to results obtained on a new diverse, public benchmark of eight pharmaceutically relevant targets. Our results offer insights into the challenges faced when using free energy calculations in real-life drug discovery projects and identify limitations that could be tackled by future method development. The new public data set we provide to the community can support further method development and comparative benchmarking of free energy calculations.


Assuntos
Descoberta de Drogas , Ligantes , Estudos Prospectivos , Estudos Retrospectivos , Termodinâmica
4.
J Chem Inf Model ; 59(1): 535-549, 2019 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-30500211

RESUMO

Computational approaches currently assist medicinal chemistry through the entire drug discovery pipeline. However, while several computational tools and strategies are available to predict binding affinity, predicting the drug-target binding kinetics is still a matter of ongoing research. Here, we challenge scaled molecular dynamics simulations to assess the off-rates for a series of structurally diverse inhibitors of the heat shock protein 90 (Hsp90) covering 3 orders of magnitude in their experimental residence times. The derived computational predictions are in overall good agreement with experimental data. Aside from the estimation of exit times, unbinding pathways were assessed through dimensionality reduction techniques. The data analysis framework proposed in this work could lead to better understanding of the mechanistic aspects related to the observed kinetic behavior.


Assuntos
Proteínas de Choque Térmico HSP90/metabolismo , Simulação de Dinâmica Molecular , Preparações Farmacêuticas/metabolismo , Proteínas de Choque Térmico HSP90/química , Humanos , Cinética , Ligantes , Ligação Proteica , Conformação Proteica
5.
J Chem Inf Model ; 59(12): 5135-5147, 2019 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-31697501

RESUMO

We here report on nonequilibrium targeted molecular dynamics simulations as a tool for the estimation of protein-ligand unbinding kinetics. Correlating simulations with experimental data from SPR kinetics measurements and X-ray crystallography on two small molecule compound libraries bound to the N-terminal domain of the chaperone Hsp90, we show that the mean nonequilibrium work computed in an ensemble of trajectories of enforced ligand unbinding is a promising predictor for ligand unbinding rates. We furthermore investigate the molecular basis determining unbinding rates within the compound libraries. We propose ligand conformational changes and protein-ligand nonbonded interactions to impact on unbinding rates. Ligands may remain longer at the protein if they exhibit strong electrostatic and/or van der Waals interactions with the target. In the case of ligands with a rigid chemical scaffold that exhibit longer residence times, transient electrostatic interactions with the protein appear to facilitate unbinding. Our results imply that understanding the unbinding pathway and the protein-ligand interactions along this path is crucial for the prediction of small molecule ligands with defined unbinding kinetics.


Assuntos
Simulação de Dinâmica Molecular , Proteínas/metabolismo , Cinética , Ligantes , Ligação Proteica , Conformação Proteica , Proteínas/química , Eletricidade Estática
6.
Angew Chem Int Ed Engl ; 57(31): 9955-9960, 2018 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-29772085

RESUMO

Investigation of protein-ligand interactions is crucial during early drug-discovery processes. ATR-FTIR spectroscopy can detect label-free protein-ligand interactions with high spatiotemporal resolution. Here we immobilized, as an example, the heat shock protein HSP90 on an ATR crystal. This protein is an important molecular target for drugs against several diseases including cancer. With our novel approach we investigated a ligand-induced secondary structural change. Two specific binding modes of 19 drug-like compounds were analyzed. Different binding modes can lead to different efficacy and specificity of different drugs. In addition, the kobs values of ligand dissociation were obtained. The results were validated by X-ray crystallography for the structural change and by SPR experiments for the dissociation kinetics, but our method yields all data in a single and simple experiment.


Assuntos
Descoberta de Drogas , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Pirazóis/farmacologia , Triazóis/farmacologia , Cristalografia por Raios X , Proteínas de Choque Térmico HSP90/química , Proteínas de Choque Térmico HSP90/metabolismo , Humanos , Ligantes , Modelos Moleculares , Conformação Molecular , Pirazóis/química , Espectroscopia de Infravermelho com Transformada de Fourier , Fatores de Tempo , Triazóis/química
7.
Nat Chem Biol ; 11(12): 973-980, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26502155

RESUMO

There is unmet need for chemical tools to explore the role of the Mediator complex in human pathologies ranging from cancer to cardiovascular disease. Here we determine that CCT251545, a small-molecule inhibitor of the WNT pathway discovered through cell-based screening, is a potent and selective chemical probe for the human Mediator complex-associated protein kinases CDK8 and CDK19 with >100-fold selectivity over 291 other kinases. X-ray crystallography demonstrates a type 1 binding mode involving insertion of the CDK8 C terminus into the ligand binding site. In contrast to type II inhibitors of CDK8 and CDK19, CCT251545 displays potent cell-based activity. We show that CCT251545 and close analogs alter WNT pathway-regulated gene expression and other on-target effects of modulating CDK8 and CDK19, including expression of genes regulated by STAT1. Consistent with this, we find that phosphorylation of STAT1(SER727) is a biomarker of CDK8 kinase activity in vitro and in vivo. Finally, we demonstrate in vivo activity of CCT251545 in WNT-dependent tumors.


Assuntos
Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/metabolismo , Quinase 8 Dependente de Ciclina/antagonistas & inibidores , Quinase 8 Dependente de Ciclina/metabolismo , Quinases Ciclina-Dependentes/antagonistas & inibidores , Quinases Ciclina-Dependentes/metabolismo , Sondas Moleculares/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Piridinas/farmacologia , Compostos de Espiro/farmacologia , Linhagem Celular Tumoral , Quinase 8 Dependente de Ciclina/genética , Quinases Ciclina-Dependentes/genética , Humanos , Modelos Moleculares , Sondas Moleculares/química , Estrutura Molecular , Inibidores de Proteínas Quinases/química , Piridinas/química , Compostos de Espiro/química
8.
Bioorg Med Chem Lett ; 27(3): 551-556, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-27998678

RESUMO

The natural product fumagillin 1 and derivatives like TNP-470 2 or beloranib 3 bind to methionine aminopeptidase 2 (MetAP-2) irreversibly. This enzyme is critical for protein maturation and plays a key role in angiogenesis. In this paper we describe the synthesis, MetAP-2 binding affinity and structural analysis of reversible MetAP-2 inhibitors. Optimization of enzymatic activity of screening hit 10 (IC50: 1µM) led to the most potent compound 27 (IC50: 0.038µM), with a concomitant improvement in LLE from 2.1 to 4.2. Structural analysis of these MetAP-2 inhibitors revealed an unprecedented conformation of the His339 side-chain imidazole ring being co-planar sandwiched between the imidazole of His331 and the aryl-ether moiety, which is bound to the purine scaffold. Systematic alteration and reduction of H-bonding capability of this metal binding moiety induced an unexpected 180° flip for the triazolo[1,5-a]pyrimdine bicyclic template.


Assuntos
Aminopeptidases/antagonistas & inibidores , Glicoproteínas/antagonistas & inibidores , Purinas/farmacologia , Pirimidinas/farmacologia , Aminopeptidases/metabolismo , Relação Dose-Resposta a Droga , Glicoproteínas/metabolismo , Humanos , Metionil Aminopeptidases , Modelos Moleculares , Estrutura Molecular , Purinas/síntese química , Purinas/química , Pirimidinas/síntese química , Pirimidinas/química , Relação Estrutura-Atividade
9.
Bioorg Med Chem Lett ; 26(5): 1443-51, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26852363

RESUMO

Here we describe the discovery and optimization of 3-benzylindazoles as potent and selective inhibitors of CDK8, also modulating CDK19, discovered from a high-throughput screening (HTS) campaign sampling the Merck compound collection. The primary hits with strong HSP90 affinity were subsequently optimized to potent and selective CDK8 inhibitors which demonstrate inhibition of WNT pathway activity in cell-based assays. X-ray crystallographic data demonstrated that 3-benzylindazoles occupy the ATP binding site of CDK8 and adopt a Type I binding mode. Medicinal chemistry optimization successfully led to improved potency, physicochemical properties and oral pharmacokinetics. Modulation of phospho-STAT1, a pharmacodynamic biomarker of CDK8, was demonstrated in an APC-mutant SW620 human colorectal carcinoma xenograft model following oral administration.


Assuntos
Neoplasias Colorretais/tratamento farmacológico , Quinase 8 Dependente de Ciclina/antagonistas & inibidores , Descoberta de Drogas , Proteínas de Choque Térmico HSP90/metabolismo , Indazóis/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Animais , Neoplasias Colorretais/metabolismo , Cristalografia por Raios X , Quinase 8 Dependente de Ciclina/metabolismo , Relação Dose-Resposta a Droga , Humanos , Indazóis/administração & dosagem , Indazóis/química , Camundongos , Modelos Moleculares , Estrutura Molecular , Inibidores de Proteínas Quinases/administração & dosagem , Inibidores de Proteínas Quinases/química , Ratos , Relação Estrutura-Atividade , Especificidade por Substrato
10.
Biochemistry ; 52(4): 613-26, 2013 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-23290007

RESUMO

To improve our understanding of drug-target interactions, we explored the effect of introducing substituted amine residues with increased chain length in the P3 residue of the thrombin inhibitor melagatran. Inhibition, kinetic, and thermodynamic data obtained via stopped-flow spectroscopy (SF), isothermal microcalorimetry (ITC), and surface plasmon resonance (SPR) biosensor analysis were interpreted with the help of X-ray crystal structures of the enzyme-inhibitor complexes. The association rate became faster when the lipophilicity of the inhibitors was increased. This was coupled to an increased enthalpic component and a corresponding decreased entropic component. The dissociation rates were reduced with an increase in chain length, with only a smaller increase and a decrease in the enthalpic and entropic components, respectively. Overall, the affinity increased with an increase in chain length, with similar changes in the enthalpic and entropic components. ITC analysis confirmed the equilibrium data from SPR analysis, showing that the interaction of melagatran was the most enthalpy-driven interaction. Structural analysis of the thrombin-inhibitor complex showed that the orientation of the P1 and P2 parts of the molecules was very similar, but that there were significant differences in the interaction between the terminal part of the P3 side chain and the binding pocket. A combination of charge repulsion, H-bonds, and hydrophobic interactions could be used to explain the observed kinetic and thermodynamic profiles for the ligands. In conclusion, changes in the structure of a lead compound can have significant effects on its interaction with the target that translate directly into kinetic and thermodynamic effects. In contrast to what may be intuitively expected, hydrogen bond formation and breakage are not necessarily reflected in enthalpy gains and losses, respectively.


Assuntos
Antitrombinas/química , Azetidinas/química , Benzilaminas/química , Trombina/química , Domínio Catalítico , Cristalografia por Raios X , Descoberta de Drogas , Hirudinas/química , Humanos , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Cinética , Modelos Moleculares , Ligação Proteica , Propriedades de Superfície , Termodinâmica , Trombina/antagonistas & inibidores
11.
Bioorg Med Chem Lett ; 23(19): 5401-9, 2013 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-23973211

RESUMO

Chemically diverse fragment hits of focal adhesion kinase (FAK) were discovered by surface plasmon resonance (SPR) screening of our in-house fragment library. Site specific binding of the primary hits was confirmed in a competition setup using a high-affinity ATP-site inhibitor of FAK. Protein crystallography revealed the binding mode of 41 out of 48 selected fragment hits within the ATP-site. Structural comparison of the fragment binding modes with a DFG-out inhibitor of FAK initiated first synthetic follow-up optimization leading to improved binding affinity.


Assuntos
Descoberta de Drogas , Proteína-Tirosina Quinases de Adesão Focal/antagonistas & inibidores , Indóis/química , Indóis/farmacologia , Fragmentos de Peptídeos/farmacologia , Bibliotecas de Moléculas Pequenas , Sulfonamidas/química , Sulfonamidas/farmacologia , Cristalografia por Raios X , Avaliação Pré-Clínica de Medicamentos , Ativação Enzimática/efeitos dos fármacos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Concentração Inibidora 50 , Modelos Moleculares , Estrutura Molecular , Fragmentos de Peptídeos/genética , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Solubilidade , Ressonância de Plasmônio de Superfície
12.
Arthritis Rheumatol ; 75(3): 375-386, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36054172

RESUMO

OBJECTIVE: To preclinically characterize a mutant form of growth and differentiation factor 5, R399E, with reduced osteogenic properties as a potential disease-modifying osteoarthritis (OA) drug. METHODS: Cartilage, synovium, and meniscus samples from patients with OA were used to evaluate anabolic and antiinflammatory properties of R399E. In the rabbit joint instability model, 65 rabbits underwent transection of the anterior cruciate ligament plus partial meniscectomy. Three intraarticular (IA) R399E doses were administered biweekly 6 times, and static incapacitance was determined to assess joint pain. OA was evaluated 13 weeks after surgery. In sheep, medial meniscus transection was performed to induce OA, dynamic weight bearing was measured in-life, and OA was assessed after 13 weeks. RESULTS: Intermittent exposure to R399E (1 week per month) was sufficient to induce cell proliferation and release of anabolic markers in 3-dimensional chondrocyte cultures. R399E also inhibited the release of interleukin-1ß (IL-1ß), IL-6, and prostaglandin E2 from cartilage with synovium, meniscal cell, and synoviocyte cultures. In rabbits, the mean difference (95% confidence interval [95% CI]) in weight bearing for R399E compared to vehicle was -5.8 (95% confidence interval [95% CI] -9.54, -2.15), -7.2 (95% CI -10.93, -3.54), and -7.7 (95% CI -11.49, -3.84) for the 0.6, 6, and 60 µg doses, respectively, 6 hours after the first IA injection, and was statistically significant through the entire study for all doses. Cartilage surface structure improved with the 6-µg dose. Structural and symptomatic improvement with the same dose was confirmed in the sheep model of OA. CONCLUSION: R399E influences several pathologic processes contributing to OA, highlighting its potential as a disease-modifying therapy.


Assuntos
Cartilagem Articular , Osteoartrite , Coelhos , Animais , Ovinos , Fator V/metabolismo , Fator V/uso terapêutico , Cartilagem Articular/patologia , Osteoartrite/metabolismo , Ligamento Cruzado Anterior/cirurgia , Ligamento Cruzado Anterior/metabolismo , Ligamento Cruzado Anterior/patologia , Diferenciação Celular
13.
ACS Med Chem Lett ; 14(5): 566-576, 2023 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-37197456

RESUMO

Wee1 is a tyrosine kinase that is highly expressed in several cancer types. Wee1 inhibition can lead to suppression of tumor cell proliferation and sensitization of cells to the effects of DNA-damaging agents. AZD1775 is a nonselective Wee1 inhibitor for which myelosuppression has been observed as a dose-limiting toxicity. We have applied structure-based drug design (SBDD) to rapidly generate highly selective Wee1 inhibitors that demonstrate better selectivity than AZD1775 against PLK1, which is known to cause myelosuppression (including thrombocytopenia) when inhibited. While selective Wee1 inhibitors described herein still achieved in vitro antitumor efficacy, thrombocytopenia was still observed in vitro.

14.
J Med Chem ; 66(13): 8666-8686, 2023 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-37403966

RESUMO

Hypoxia-inducible factors (HIFs) are heterodimeric transcription factors induced in diverse pathophysiological settings. Inhibition of HIF-2α has become a strategy for cancer treatment since the discovery that small molecules, upon binding into a small cavity of the HIF-2α PAS B domain, can alter its conformation and disturb the activity of the HIF dimer complex. Herein, the design, synthesis, and systematic SAR exploration of cycloalkyl[c]thiophenes as novel HIF-2α inhibitors are described, providing the first chemotype featuring an alkoxy-aryl scaffold. X-ray data confirmed the ability of these inhibitors to induce perturbation of key amino acids by appropriately presenting key pharmacophoric elements in the hydrophobic cavity. Selected compounds showed inhibition of VEGF-A secretion in cancer cells and prevention of Arg1 expression and activity in IL4-stimulated macrophages. Moreover, in vivo target gene modulation was demonstrated with compound 35r. Thus, the disclosed HIF-2α inhibitors represent valuable tools for investigating selective HIF-2α inhibition and its effect on tumor biology.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos , Tiofenos , Humanos , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Tiofenos/farmacologia , Fatores de Transcrição , Hipóxia , Subunidade alfa do Fator 1 Induzível por Hipóxia
15.
Bioorg Med Chem Lett ; 22(18): 5909-14, 2012 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-22901389

RESUMO

Indole-pyrrolidines were identified as inhibitors of 11ß-hydroxysteroid dehydrogenase type 1 (11ß-HSD1) by high-throughput screening. Optimisation of the initial hit through structure-based design led to 7-azaindole-derivatives, with the best analogues displaying single digit nanomolar IC(50) potency. The modeling hypotheses were confirmed by solving the X-ray co-crystal structure of one of the lead compounds. These compounds were selective against 11ß-hydroxysteroid dehydrogenase type 2 (selectivity ratio >200) and exhibited good inhibition of 11ß-HSD1 (IC(50)<1µM) in a cellular model (3T3L1 adipocytes).


Assuntos
11-beta-Hidroxiesteroide Desidrogenase Tipo 1/antagonistas & inibidores , Amidas/farmacologia , Desenho de Fármacos , Inibidores Enzimáticos/farmacologia , Indóis/química , Pirrolidinas/química , 11-beta-Hidroxiesteroide Desidrogenase Tipo 1/metabolismo , Amidas/síntese química , Amidas/química , Animais , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Humanos , Camundongos , Modelos Moleculares , Estrutura Molecular , Relação Estrutura-Atividade
16.
Bioorg Med Chem Lett ; 22(13): 4396-403, 2012 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-22632933

RESUMO

Inhibitors of the Hsp90 molecular chaperone are showing considerable promise as potential molecular therapeutic agents for the treatment of cancer. Here we describe the identification of novel small molecular weight inhibitors of Hsp90 using a fragment based approach. Fragments were selected by docking, tested in a biochemical assay and the confirmed hits were crystallized. Information gained from X-ray structures of these fragments and other chemotypes was used to drive the fragment evolution process. Optimization of these high µM binders resulted in 3-benzylindazole derivatives with significantly improved affinity and anti-proliferative effects in different human cancer cell lines.


Assuntos
Amidas/química , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Indazóis/química , Bibliotecas de Moléculas Pequenas/química , Amidas/toxicidade , Sítios de Ligação , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Simulação por Computador , Cristalografia por Raios X , Avaliação Pré-Clínica de Medicamentos , Proteínas de Choque Térmico HSP90/metabolismo , Humanos , Estrutura Terciária de Proteína , Bibliotecas de Moléculas Pequenas/toxicidade , Relação Estrutura-Atividade
17.
J Med Chem ; 65(13): 9206-9229, 2022 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-35763499

RESUMO

The dysregulated Hippo pathway and, consequently, hyperactivity of the transcriptional YAP/TAZ-TEAD complexes is associated with diseases such as cancer. Prevention of YAP/TAZ-TEAD triggered gene transcription is an attractive strategy for therapeutic intervention. The deeply buried and conserved lipidation pocket (P-site) of the TEAD transcription factors is druggable. The discovery and optimization of a P-site binding fragment (1) are described. Utilizing structure-based design, enhancement in target potency was engineered into the hit, capitalizing on the established X-ray structure of TEAD1. The efforts culminated in the optimized in vivo tool MSC-4106, which exhibited desirable potency, mouse pharmacokinetic properties, and in vivo efficacy. In close correlation to compound exposure, the time- and dose-dependent downregulation of a proximal biomarker could be shown.


Assuntos
Neoplasias , Fatores de Transcrição , Animais , Camundongos , Fatores de Transcrição de Domínio TEA , Fatores de Transcrição/metabolismo
18.
J Med Chem ; 64(14): 10230-10245, 2021 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-34228444

RESUMO

Proteasomes are broadly expressed key components of the ubiquitin-dependent protein degradation pathway containing catalytically active subunits (ß1, ß2, and ß5). LMP7 (ß5i) is a subunit of the immunoproteasome, an inducible isoform that is predominantly expressed in hematopoietic cells. Clinically effective pan-proteasome inhibitors for the treatment of multiple myeloma (MM) nonselectively target LMP7 and other subunits of the constitutive proteasome and immunoproteasome with comparable potency, which can limit the therapeutic applicability of these drugs. Here, we describe the discovery and structure-based hit optimization of novel amido boronic acids, which selectively inhibit LMP7 while sparing all other subunits. The exploitation of structural differences between the proteasome subunits culminated in the identification of the highly potent, exquisitely selective, and orally available LMP7 inhibitor 50 (M3258). Based on the strong antitumor activity observed with M3258 in MM models and a favorable preclinical data package, a phase I clinical trial was initiated in relapsed/refractory MM patients.


Assuntos
Descoberta de Drogas , Complexo de Endopeptidases do Proteassoma/metabolismo , Inibidores de Proteassoma/farmacologia , Relação Dose-Resposta a Droga , Humanos , Estrutura Molecular , Inibidores de Proteassoma/síntese química , Inibidores de Proteassoma/química , Subunidades Proteicas/antagonistas & inibidores , Subunidades Proteicas/metabolismo , Relação Estrutura-Atividade
19.
Mol Cancer Ther ; 20(8): 1378-1387, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34045234

RESUMO

Large multifunctional peptidase 7 (LMP7/ß5i/PSMB8) is a proteolytic subunit of the immunoproteasome, which is predominantly expressed in normal and malignant hematolymphoid cells, including multiple myeloma, and contributes to the degradation of ubiquitinated proteins. Described herein for the first time is the preclinical profile of M3258; an orally bioavailable, potent, reversible and highly selective LMP7 inhibitor. M3258 demonstrated strong antitumor efficacy in multiple myeloma xenograft models, including a novel model of the human bone niche of multiple myeloma. M3258 treatment led to a significant and prolonged suppression of tumor LMP7 activity and ubiquitinated protein turnover and the induction of apoptosis in multiple myeloma cells both in vitro and in vivo Furthermore, M3258 showed superior antitumor efficacy in selected multiple myeloma and mantle cell lymphoma xenograft models compared with the approved nonselective proteasome inhibitors bortezomib and ixazomib. The differentiated preclinical profile of M3258 supported the initiation of a phase I study in patients with multiple myeloma (NCT04075721).


Assuntos
Ácidos Borônicos/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Furanos/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Mieloma Múltiplo/tratamento farmacológico , Complexo de Endopeptidases do Proteassoma/química , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Apoptose , Compostos de Boro/administração & dosagem , Bortezomib/administração & dosagem , Proliferação de Células , Feminino , Glicina/administração & dosagem , Glicina/análogos & derivados , Humanos , Camundongos , Camundongos Nus , Mieloma Múltiplo/metabolismo , Mieloma Múltiplo/patologia , Proteólise , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
20.
Cell Chem Biol ; 28(5): 686-698.e7, 2021 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-33497606

RESUMO

There is increasing evidence of a significant correlation between prolonged drug-target residence time and increased drug efficacy. Here, we report a structural rationale for kinetic selectivity between two closely related kinases: focal adhesion kinase (FAK) and proline-rich tyrosine kinase 2 (PYK2). We found that slowly dissociating FAK inhibitors induce helical structure at the DFG motif of FAK but not PYK2. Binding kinetic data, high-resolution structures and mutagenesis data support the role of hydrophobic interactions of inhibitors with the DFG-helical region, providing a structural rationale for slow dissociation rates from FAK and kinetic selectivity over PYK2. Our experimental data correlate well with computed relative residence times from molecular simulations, supporting a feasible strategy for rationally optimizing ligand residence times. We suggest that the interplay between the protein structural mobility and ligand-induced effects is a key regulator of the kinetic selectivity of inhibitors of FAK versus PYK2.


Assuntos
Quinase 1 de Adesão Focal/antagonistas & inibidores , Indóis/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Sulfonamidas/farmacologia , Células Cultivadas , Feminino , Quinase 1 de Adesão Focal/metabolismo , Células HEK293 , Humanos , Indóis/síntese química , Indóis/química , Cinética , Ligantes , Modelos Moleculares , Estrutura Molecular , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Sulfonamidas/síntese química , Sulfonamidas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA