Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biochem Biophys Res Commun ; 648: 36-43, 2023 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-36724558

RESUMO

It is considered that sensory neurons extend into the tumor microenvironment (TME), which could be associated with tumor growth. However, little is known about how sensory signaling could promote tumor progression. In this study, chemogenetic activation of transient receptor potential vanilloid 1 (Trpv1)-positive sensory neurons (C-fibers) by the microinjection of AAV-hSyn-FLEX-hM3Dq-mCherry into the sciatic nerve dramatically increased tumor volume in tumor-bearing Trpv1-Cre mice. This activation in Trpv1::hM3Dq mice that had undergone tumor transplantation significantly reduced the population of tumor-infiltrating CD4+ T cells and increased the mRNA level of the M2-macrophage marker, CX3C motif chemokine receptor 1 (Cx3cr1) in immunosuppressive cells, such as tumor-associated macrophages (TAMs) and tumor-infiltrating monocytic myeloid-derived suppressor cells (M-MDSCs). Under these conditions, we found a significant correlation between the decreased expression of the M1-macrophage marker Tnf and tumor volume. These findings suggest that repeated activation of Trpv1-positive sensory neurons may facilitate tumor growth along with changes in tumor-infiltrating immune cells.


Assuntos
Antineoplásicos , Camundongos , Animais , Antineoplásicos/metabolismo , Macrófagos/metabolismo , Células Receptoras Sensoriais/metabolismo , Linhagem Celular Tumoral , Transplante de Neoplasias , Microambiente Tumoral , Canais de Cátion TRPV/genética , Canais de Cátion TRPV/metabolismo
2.
Mol Brain ; 16(1): 19, 2023 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-36737827

RESUMO

A growing body of evidence suggests that intractable pain reduces both the quality of life and survival in cancer patients. In the present study, we evaluated whether chronic pain stimuli could directly affect cancer pathology using tumor-bearing mice. For this purpose, we used two different models of chronic pain in mice, neuropathic pain and persistent postsurgical pain, with Lewis lung carcinoma (LLC) as tumor cells. We found that tumor growth was dramatically promoted in these pain models. As well as these pain models, tumor growth of LLC, severe osteosarcoma (AXT) and B16 melanoma cells was significantly promoted by concomitant activation of sensory neurons in AAV6-hM3Dq-injected mice treated with the designer drug clozapine-N-oxide (CNO). Significant increases in mRNA levels of vascular endothelial growth factor-A (Vegfa), tachykinin precursor 1 (Tac1) and calcitonin-related polypeptide alpha (Calca) in the ipsilateral side of dorsal root ganglion of AAV6-hM3Dq-injected mice were observed by concomitant activation of sensory neurons due to CNO administration. Moreover, in a model of bone cancer pain in which mice were implanted with AXT cells into the right femoral bone marrow cavity, the survival period was significantly prolonged by repeated inhibition of sensory neurons of AAV6-hM4Di-injected mice by CNO administration. These findings suggest that persistent pain signals may promote tumor growth by the increased expression of sensory-located peptides and growth factors, and controlling cancer pain may prolong cancer survival.


Assuntos
Neoplasias Ósseas , Dor do Câncer , Dor Crônica , Camundongos , Animais , Fator A de Crescimento do Endotélio Vascular/metabolismo , Dor do Câncer/complicações , Dor Crônica/metabolismo , Qualidade de Vida , Células Receptoras Sensoriais/metabolismo , Neoplasias Ósseas/complicações
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA