Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 22(10)2021 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-34068002

RESUMO

How millions of axons navigate accurately toward synaptic targets during development is a long-standing question. Over decades, multiple studies have enriched our understanding of axonal pathfinding with discoveries of guidance molecules and morphogens, their receptors, and downstream signalling mechanisms. Interestingly, classification of attractive and repulsive cues can be fluid, as single guidance cues can act as both. Similarly, guidance cues can be secreted, chemotactic cues or anchored, adhesive cues. How a limited set of guidance cues generate the diversity of axonal guidance responses is not completely understood. Differential expression and surface localization of receptors, as well as crosstalk and spatiotemporal patterning of guidance cues, are extensively studied mechanisms that diversify axon guidance pathways. Posttranslational modification is a common, yet understudied mechanism of diversifying protein functions. Many proteins in axonal guidance pathways are glycoproteins and how glycosylation modulates their function to regulate axonal motility and guidance is an emerging field. In this review, we discuss major classes of glycosylation and their functions in axonal pathfinding. The glycosylation of guidance cues and guidance receptors and their functional implications in axonal outgrowth and pathfinding are discussed. New insights into current challenges and future perspectives of glycosylation pathways in neuronal development are discussed.


Assuntos
Axônios/fisiologia , Glicoproteínas/metabolismo , Fatores de Crescimento Neural/metabolismo , Animais , Glicosilação , Humanos , Transdução de Sinais
2.
Biophys J ; 115(4): 713-724, 2018 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-30054033

RESUMO

Mechanotransduction is likely to be an important mechanism of signaling in thin, elongated cells such as neurons. Maintenance of prestress or rest tension may facilitate mechanotransduction in these cells. In recent years, functional roles for mechanical tension in neuronal development and physiology are beginning to emerge, but the cellular mechanisms regulating neurite tension remain poorly understood. Active contraction of neurites is a potential mechanism of tension regulation. In this study, we have explored cytoskeletal mechanisms mediating active contractility of neuronal axons. We have developed a simple assay in which we evaluate contraction of curved axons upon trypsin-mediated detachment. We show that curved axons undergo contraction and straighten upon deadhesion. Axonal straightening was found to be actively driven by actomyosin contractility, whereas microtubules may subserve a secondary role. We find that although axons show a monotonous decrease in length upon contraction, subcellularly, the cytoskeleton shows a heterogeneous contractile response. Further, using an assay for spontaneous development of tension without trypsin-induced deadhesion, we show that axons are intrinsically contractile. These experiments, using novel experimental approaches, implicate the axonal cytoskeleton in tension homeostasis. Our data suggest that although globally, the axon behaves as a mechanical continuum, locally, the cytoskeleton is remodeled heterogeneously.


Assuntos
Axônios/metabolismo , Citoesqueleto/metabolismo , Mecanotransdução Celular , Actomiosina/metabolismo , Animais , Adesão Celular , Galinhas , Microtúbulos/metabolismo , Tripsina/metabolismo
3.
bioRxiv ; 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38765979

RESUMO

The guidance cue netrin-1 promotes both growth cone attraction and growth cone repulsion. How netrin-1 elicits these diverse axonal responses, beyond engaging the attractive receptor DCC and repulsive receptors of the UNC5 family, remains elusive. Here we demonstrate that murine netrin-1 induces biphasic axonal responses in cortical neurons: attraction at lower concentrations and repulsion at higher concentrations using both a microfluidic-based netrin-1 gradient and bath application of netrin-1. TRIM9 is a brain-enriched E3 ubiquitin ligase previously shown to bind and cluster the attractive receptor DCC at the plasma membrane and regulate netrin-dependent attractive responses. However, whether TRIM9 also regulated repulsive responses to netrin-1 remained to be seen. In this study, we show that TRIM9 localizes and interacts with both the attractive netrin receptor DCC and the repulsive netrin receptor, UNC5C, and that deletion of murine Trim9 alters both attractive and repulsive responses to murine netrin-1. TRIM9 was required for netrin-1-dependent changes in surface levels of DCC and total levels of UNC5C in the growth cone during morphogenesis. We demonstrate that DCC at the membrane regulates growth cone area and show that TRIM9 negatively regulates FAK activity in the absence of netrin-1. We investigate membrane dynamics of the UNC5C receptor using pH-mScarlet fused to the extracellular domain of UNC5C. Minutes after netrin addition, levels of UNC5C at the plasma membrane drop in a TRIM9-independent fashion, however TRIM9 regulated the mobility of UNC5C in the plasma membrane in the absence of netrin-1. Together this work demonstrates that TRIM9 interacts with and regulates both DCC and UNC5C during attractive and repulsive axonal responses to netrin-1.

4.
J Biosci ; 452020.
Artigo em Inglês | MEDLINE | ID: mdl-32385223

RESUMO

For more than a century, mechanical forces have been predicted to govern many biological processes during development, both at the cellular level and in tissue homeostasis. The cytomechanics of the thin and highly extended neuronal axons have intrigued generations of biologists and biophysicists. However, our knowledge of the biophysics of neurite growth and development is far from complete. Due to its motile behavior and its importance in axonal pathfinding, the growth cone has received significant attention. A considerable amount of information is now available on the spatiotemporal regulation of biochemical signaling and remodeling of the growth cone cytoskeleton. However, the cytoskeletal organization and dynamics in the axonal shaft were poorly explored until recently. Driven by advances in microscopy, there has been a surge of interest in the axonal cytoskeleton in the last few years. A major emerging area of investigation is the relationship between the axonal cytoskeleton and the diverse mechanobiological responses of neurons. This review attempts to summarize our current understanding of the axonal cytoskeleton and its critical role in governing axonal mechanics in the context of neuronal development.


Assuntos
Citoesqueleto de Actina/metabolismo , Cones de Crescimento/metabolismo , Filamentos Intermediários/metabolismo , Mecanotransdução Celular , Plasticidade Neuronal/fisiologia , Sinapses/metabolismo , Citoesqueleto de Actina/ultraestrutura , Animais , Fenômenos Biomecânicos , Cones de Crescimento/ultraestrutura , Humanos , Filamentos Intermediários/ultraestrutura , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Microtúbulos/ultraestrutura , Neurogênese/fisiologia , Sinapses/ultraestrutura , Vesículas Sinápticas/metabolismo , Vesículas Sinápticas/ultraestrutura
5.
Neuroscience ; 448: 160-171, 2020 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-33002558

RESUMO

Growth cone-mediated axonal outgrowth and accurate synaptic targeting are central to brain morphogenesis. Translocation of the growth cone necessitates mechanochemical regulation of cell-extracellular matrix interactions and the generation of propulsive traction forces onto the growth environment. However, the molecular mechanisms subserving force generation by growth cones remain poorly characterized. The formin family member, Fmn2, has been identified earlier as a regulator of growth cone motility. Here, we explore the mechanisms underlying Fmn2 function in the growth cone. Evaluation of multiple components of the adhesion complexes suggests that Fmn2 regulates point contact stability. Analysis of F-actin retrograde flow reveals that Fmn2 functions as a clutch molecule and mediates the coupling of the actin cytoskeleton to the growth substrate, via point contact adhesion complexes. Using traction force microscopy, we show that the Fmn2-mediated clutch function is necessary for the generation of traction stresses by neurons. Our findings suggest that Fmn2, a protein associated with neurodevelopmental and neurodegenerative disorders, is a key regulator of a molecular clutch activity and consequently motility of neuronal growth cones.


Assuntos
Forminas/genética , Cones de Crescimento , Proteínas Nucleares/genética , Actinas , Movimento Celular , Neurônios
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA