Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Stroke ; 52(1): 260-270, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33161843

RESUMO

BACKGROUND AND PURPOSE: Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection is associated with an increased rate of cerebrovascular events including ischemic stroke and intracerebral hemorrhage. The mechanisms underlying cerebral endothelial susceptibility and response to SARS-CoV-2 are unknown yet critical to understanding the association of SARS-CoV-2 infection with cerebrovascular events. METHODS: Endothelial cells were isolated from human brain and analyzed by RNA sequencing. Human umbilical vein and human brain microvascular cells were used in both monolayer culture and endothelialized within a 3-dimensional printed vascular model of the middle cerebral artery. Gene expression levels were measured by quantitative polymerase chain reaction and direct RNA hybridization. Recombinant SARS-CoV-2 S protein and S protein-containing liposomes were used to measure endothelial binding by immunocytochemistry. RESULTS: ACE2 (angiotensin-converting enzyme-2) mRNA levels were low in human brain and monolayer endothelial cell culture. Within the 3-dimensional printed vascular model, ACE2 gene expression and protein levels were progressively increased by vessel size and flow rates. SARS-CoV-2 S protein-containing liposomes were detected in human umbilical vein endothelial cells and human brain microvascular endothelial cells in 3-dimensional middle cerebral artery models but not in monolayer culture consistent with flow dependency of ACE2 expression. Binding of SARS-CoV-2 S protein triggered 83 unique genes in human brain endothelial cells including upregulation of complement component C3. CONCLUSIONS: Brain endothelial cells are susceptible to direct SARS-CoV-2 infection through flow-dependent expression of ACE2. Viral S protein binding triggers a unique gene expression profile in brain endothelia that may explain the association of SARS-CoV-2 infection with cerebrovascular events.


Assuntos
Enzima de Conversão de Angiotensina 2/metabolismo , COVID-19/virologia , Células Endoteliais/virologia , SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo , Transcriptoma , Encéfalo/metabolismo , Encéfalo/virologia , COVID-19/metabolismo , Células Cultivadas , Circulação Cerebrovascular/fisiologia , Células Endoteliais/metabolismo , Humanos , Modelos Anatômicos , Estresse Mecânico
2.
Proc Natl Acad Sci U S A ; 110(12): 4640-5, 2013 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-23487745

RESUMO

Embryonic nephron progenitor cells are segregated in molecularly distinct compartments of unknown function. Our study reveals an integral role for bone morphogenetic protein-SMAD in promoting transition of progenitors from the primitive Cbp/p300-interacting transactivator 1 expressing (CITED1+) compartment to the uniquely sine oculis-related homeobox 2 expressing (SIX2-only) compartment where they become inducible by wingless-type mouse mammary tumor virus integration site family member (WNT)/ß-catenin signaling. Significantly, CITED1(+) cells are refractory to WNT/ß-catenin induction. We propose a model in which the primitive CITED1(+) compartment is refractory to induction by WNT9b/ß-catenin, ensuring maintenance of undifferentiated progenitor cells for future nephrogenesis. Bone morphogenetic protein 7-SMAD is then required for transition to a distinct compartment in which cells become inducible by WNT9b/ß-catenin, allowing them to progress toward epithelialization.


Assuntos
Diferenciação Celular/fisiologia , Células Epiteliais/metabolismo , Néfrons/metabolismo , Células-Tronco/metabolismo , Via de Sinalização Wnt/fisiologia , Animais , Proteínas Reguladoras de Apoptose , Proteína Morfogenética Óssea 7/genética , Proteína Morfogenética Óssea 7/metabolismo , Linhagem Celular , Células Epiteliais/citologia , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Camundongos , Camundongos Knockout , Néfrons/citologia , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Smad/genética , Proteínas Smad/metabolismo , Células-Tronco/citologia , Transativadores/genética , Transativadores/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas Wnt/genética , Proteínas Wnt/metabolismo , beta Catenina/genética , beta Catenina/metabolismo
3.
Pediatr Nephrol ; 29(4): 531-6, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23954916

RESUMO

Bone morphogenetic protein (BMP) signaling plays an essential role in many aspects of kidney development, and is a major determinant of outcome in kidney injury. BMP treatment is also an essential component of protocols for differentiation of nephron progenitors from pluripotent stem cells. This review discusses the role of BMP signaling to nephron progenitor cells in each of these contexts.


Assuntos
Proteínas Morfogenéticas Ósseas/metabolismo , Néfrons/embriologia , Néfrons/metabolismo , Transdução de Sinais/fisiologia , Células-Tronco/metabolismo , Animais , Humanos , Organogênese/fisiologia
4.
Mol Cancer Res ; 22(7): 656-667, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38441553

RESUMO

A key feature distinguishing high-grade glioma (HG) from low-grade glioma (LG) is the extensive neovascularization and endothelial hyperproliferation. Prior work has shown that tumor-associated vasculature from HG is molecularly and functionally distinct from normal brain vasculature and expresses higher levels of protumorigenic factors that promote glioma growth and progression. However, it remains unclear whether vessels from LG also express protumorigenic factors, and to what extent they functionally contribute to glioma growth. Here, we profile the transcriptomes of glioma-associated vascular cells (GVC) from IDH-mutant (mIDH) LG and IDH-wild-type (wIDH) HG and show that they exhibit significant molecular and functional differences. LG-GVC show enrichment of extracellular matrix-related gene sets and sensitivity to antiangiogenic drugs, whereas HG-GVC display an increase in immune response-related gene sets and antiangiogenic resistance. Strikingly, conditioned media from LG-GVC inhibits the growth of wIDH glioblastoma cells, whereas HG-GVC promotes growth. In vivo cotransplantation of LG-GVC with tumor cells reduces growth, whereas HG-GVC enhances tumor growth in orthotopic xenografts. We identify ASPORIN (ASPN), a small leucine-rich repeat proteoglycan, highly enriched in LG-GVC as a growth suppressor of wIDH glioblastoma cells in vitro and in vivo. Together, these findings indicate that GVC from LG and HG are molecularly and functionally distinct and differentially regulate tumor growth. Implications: This study demonstrated that vascular cells from IDH-mutant LG and IDH-wild-type HG exhibit distinct molecular signatures and have differential effects on tumor growth via regulation of ASPN-TGFß1-GPM6A signaling.


Assuntos
Neoplasias Encefálicas , Glioma , Neovascularização Patológica , Humanos , Glioma/patologia , Glioma/genética , Glioma/metabolismo , Animais , Camundongos , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neovascularização Patológica/genética , Neovascularização Patológica/patologia , Neovascularização Patológica/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Mutação , Gradação de Tumores
5.
Neurooncol Adv ; 6(1): vdae005, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38616896

RESUMO

Background: Non-enhancing (NE) infiltrating tumor cells beyond the contrast-enhancing (CE) bulk of tumor are potential propagators of recurrence after gross total resection of high-grade glioma. Methods: We leveraged single-nucleus RNA sequencing on 15 specimens from recurrent high-grade gliomas (n = 5) to compare prospectively identified biopsy specimens acquired from CE and NE regions. Additionally, 24 CE and 22 NE biopsies had immunohistochemical staining to validate RNA findings. Results: Tumor cells in NE regions are enriched in neural progenitor cell-like cellular states, while CE regions are enriched in mesenchymal-like states. NE glioma cells have similar proportions of proliferative and putative glioma stem cells relative to CE regions, without significant differences in % Ki-67 staining. Tumor cells in NE regions exhibit upregulation of genes previously associated with lower grade gliomas. Our findings in recurrent GBM paralleled some of the findings in a re-analysis of a dataset from primary GBM. Cell-, gene-, and pathway-level analyses of the tumor microenvironment in the NE region reveal relative downregulation of tumor-mediated neovascularization and cell-mediated immune response, but increased glioma-to-nonpathological cell interactions. Conclusions: This comprehensive analysis illustrates differing tumor and nontumor landscapes of CE and NE regions in high-grade gliomas, highlighting the NE region as an area harboring likely initiators of recurrence in a pro-tumor microenvironment and identifying possible targets for future design of NE-specific adjuvant therapy. These findings also support the aggressive approach to resection of tumor-bearing NE regions.

6.
Antioxid Redox Signal ; 39(13-15): 890-903, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37470216

RESUMO

Aims: The goal of this study was to determine whether nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX)-produced reactive oxygen species (ROS) enhance brain tumor growth of glioblastoma (GBM) under hypoxic conditions and during radiation treatment. Results: Exogenous ROS promoted brain tumor growth in gliomasphere cultures that expressed functional phosphate and tensin homolog (PTEN), but not in tumors that were PTEN deficient. Hypoxia induced the production of endogenous cytoplasmic ROS and tumor cell growth via activation of NOX. NOX activation resulted in oxidation of PTEN and downstream protein kinase B (Akt) activation. Radiation also promoted ROS production via NOX, which, in turn, resulted in cellular protection that could be abrogated by knockdown of the key NOX component, p22. Knockdown of p22 also inhibited tumor growth and enhanced the efficacy of radiation in PTEN-expressing GBM cells. Innovation: While other studies have implicated NOX function in GBM models, this study demonstrates NOX activation and function under physiological hypoxia and following radiation in GBM, two conditions that are seen in patients. NOX plays an important role in a PTEN-expressing GBM model system, but not in PTEN-nonfunctional systems, and provides a potential, patient-specific therapeutic opportunity. Conclusion: This study provides a strong basis for pursuing NOX inhibition in PTEN-expressing GBM cells as a possible adjunct to radiation therapy. Antioxid. Redox Signal. 39, 890-903.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , NADP/metabolismo , Tensinas , Espécies Reativas de Oxigênio/metabolismo , Glioblastoma/genética , Glioblastoma/radioterapia , Glioblastoma/patologia , Fosfatos , NADPH Oxidases/genética , NADPH Oxidases/metabolismo , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/radioterapia , Hipóxia
7.
bioRxiv ; 2023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-37461434

RESUMO

Background: A key feature distinguishing high-grade glioma (HGG) from low-grade glioma (LGG) is the extensive neovascularization and endothelial hyperproliferation. Prior work has shown that tumor endothelial cells (TEC) from HGG are molecularly and functionally distinct from normal brain EC and secrete higher levels of pro-tumorigenic factors that promote glioma growth and progression. However, it remains unclear whether TEC from LGG also express pro-tumorigenic factors, and to what extent they functionally contribute to glioma growth. Methods: Transcriptomic profiling was conducted on tumor endothelial cells (TEC) from grade II/III (LGG, IDH-mutant) and grade IV HGG (IDH-wildtype). Functional differences between LGG- and HGG-TEC were evaluated using growth assays, resistance to anti-angiogenic drugs and radiation therapy. Conditioned media and specific factors from LGG- and HGG-TEC were tested on patient-derived gliomasphere lines using growth assays in vitro and in co-transplantation studies in vivo in orthotopic xenograft models. Results: LGG-TEC showed enrichment of extracellular matrix and cell cycle-related gene sets and sensitivity to anti-angiogenic therapy whereas HGG-TEC displayed an increase in immune response-related gene sets and anti-angiogenic resistance. LGG- and HGG-TEC displayed opposing effects on growth and proliferation of IDH-wildtype and mutant tumor cells. Asporin (ASPN), a small leucine rich proteoglycan enriched in LGG-TEC was identified as a growth suppressor of IDH-wildtype GBM by modulating TGFΒ1-GPM6A signaling. Conclusions: Our findings indicate that TEC from LGG and HGG are molecularly and functionally heterogeneous and differentially regulate the growth of IDH-wildtype and mutant tumors.

8.
Cancer Res Commun ; 2(9): 1049-1060, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36213002

RESUMO

Analysis of tumor gene expression is an important approach for the classification and identification of therapeutic vulnerabilities. However, targeting glioblastoma (GBM) based on molecular subtyping has not yet translated into successful therapies. Here, we present an integrative approach based on molecular pathways to expose new potentially actionable targets. We used gene set enrichment analysis (GSEA) to conduct an unsupervised clustering analysis to condense the gene expression data from bulk patient samples and patient-derived gliomasphere lines into new gene signatures. We identified key targets that are predicted to be differentially activated between tumors and were functionally validated in a library of gliomasphere cultures. Resultant cluster-specific gene signatures associated not only with hallmarks of cell cycle and stemness gene expression, but also with cell-type specific markers and different cellular states of GBM. Several upstream regulators, such as PIK3R1 and EBF1 were differentially enriched in cells bearing stem cell like signatures and bear further investigation. We identified the transcription factor E2F1 as a key regulator of tumor cell proliferation and self-renewal in only a subset of gliomasphere cultures predicted to be E2F1 signaling dependent. Our in vivo work also validated the functional significance of E2F1 in tumor formation capacity in the predicted samples. E2F1 inhibition also differentially sensitized E2F1-dependent gliomasphere cultures to radiation treatment. Our findings indicate that this novel approach exploring cancer pathways highlights key therapeutic vulnerabilities for targeting GBM.


Assuntos
Glioblastoma , Humanos , Glioblastoma/tratamento farmacológico , Linhagem Celular Tumoral , Fatores de Transcrição/metabolismo , Proliferação de Células/genética , Fator de Transcrição E2F1/genética
9.
Cell Rep ; 41(3): 111511, 2022 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-36261010

RESUMO

Glioblastoma (GBM) is characterized by extensive microvascular hyperproliferation. In addition to supplying blood to the tumor, GBM vessels also provide trophic support to glioma cells and serve as conduits for migration into the surrounding brain, promoting recurrence. Here, we enrich CD31-expressing glioma vascular cells (GVCs) and A2B5-expressing glioma tumor cells (GTCs) from primary GBM and use RNA sequencing to create a comprehensive molecular interaction map of the secreted and extracellular factors elaborated by GVCs that can interact with receptors and membrane molecules on GTCs. To validate our findings, we utilize functional assays, including a hydrogel-based migration assay and in vivo mouse models to demonstrate that one identified factor, the little-studied integrin binding sialoprotein (IBSP), enhances tumor growth and promotes the migration of GTCs along the vasculature. This perivascular niche interactome will serve as a resource to the research community in defining the potential functions of the GBM vasculature.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Glioma , Animais , Camundongos , Glioblastoma/patologia , Sialoproteína de Ligação à Integrina/metabolismo , Neoplasias Encefálicas/patologia , Células-Tronco Neoplásicas/metabolismo , Glioma/patologia , Movimento Celular , Hidrogéis
10.
Nat Commun ; 13(1): 6202, 2022 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-36261421

RESUMO

Glioma stem cells (GSC) exhibit plasticity in response to environmental and therapeutic stress leading to tumor recurrence, but the underlying mechanisms remain largely unknown. Here, we employ single-cell and whole transcriptomic analyses to uncover that radiation induces a dynamic shift in functional states of glioma cells allowing for acquisition of vascular endothelial-like and pericyte-like cell phenotypes. These vascular-like cells provide trophic support to promote proliferation of tumor cells, and their selective depletion results in reduced tumor growth post-treatment in vivo. Mechanistically, the acquisition of vascular-like phenotype is driven by increased chromatin accessibility and H3K27 acetylation in specific vascular genes allowing for their increased expression post-treatment. Blocking P300 histone acetyltransferase activity reverses the epigenetic changes induced by radiation and inhibits the adaptive conversion of GSC into vascular-like cells and tumor growth. Our findings highlight a role for P300 in radiation-induced stress response, suggesting a therapeutic approach to prevent glioma recurrence.


Assuntos
Glioma , Recidiva Local de Neoplasia , Humanos , Recidiva Local de Neoplasia/patologia , Glioma/genética , Glioma/radioterapia , Glioma/metabolismo , Células-Tronco Neoplásicas/metabolismo , Cromatina/metabolismo , Histona Acetiltransferases/metabolismo
11.
Stem Cells Transl Med ; 9(1): 106-119, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31464098

RESUMO

The objective of the study was to identify the mechanism of action for a radiation mitigator of the gastrointestinal (GI) acute radiation syndrome (ARS), identified in an unbiased high-throughput screen. We used mice irradiated with a lethal dose of radiation and treated with daily injections of the radiation mitigator 1-[(4-nitrophenyl)sulfonyl]-4-phenylpiperazine to study its effects on key pathways involved in intestinal stem cell (ISC) maintenance. RNASeq, quantitative reverse transcriptase-polymerase chain reaction, and immunohistochemistry were performed to identify pathways engaged after drug treatment. Target validation was performed with competition assays, reporter cells, and in silico docking. 1-[(4-Nitrophenyl)sulfonyl]-4-phenylpiperazine activates Hedgehog signaling by binding to the transmembrane domain of Smoothened, thereby expanding the ISC pool, increasing the number of regenerating crypts and preventing the GI-ARS. We conclude that Smoothened is a target for radiation mitigation in the small intestine that could be explored for use in radiation accidents as well as to mitigate normal tissue toxicity during and after radiotherapy of the abdomen.


Assuntos
Síndrome Aguda da Radiação/radioterapia , Nitrofenóis/química , Piperazinas/química , Animais , Camundongos
12.
Dis Model Mech ; 11(1)2018 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-29196442

RESUMO

The final nephron number in an adult kidney is regulated by nephron progenitor cell availability and collecting duct branching in the fetal period. Fetal environmental perturbations that cause reductions in cell numbers in these two compartments result in low nephron endowment. Previous work has shown that maternal dietary factors influence nephron progenitor cell availability, with both caloric restriction and protein deprivation leading to reduced cell numbers through apoptosis. In this study, we evaluate the consequences of inducing nephron progenitor cell death on progenitor niche dynamics and on nephron endowment. Depletion of approximately 40% of nephron progenitor cells by expression of diphtheria toxin A at embryonic day 15 in the mouse results in 10-20% nephron reduction in the neonatal period. Analysis of cell numbers within the progenitor cell pool following induction of apoptosis reveals a compensatory response in which surviving progenitor cells increase their proliferation and replenish the niche. The proliferative response is temporally associated with infiltration of macrophages into the nephrogenic zone. Colony stimulating factor 1 (CSF1) has a mitogenic effect on nephron progenitor cells, providing a potential explanation for the compensatory proliferation. However, CSF1 also promotes interstitial cell proliferation, and the compensatory response is associated with interstitial expansion in recovering kidneys which can be pharmacologically inhibited by treatment with clodronate liposomes. Our findings suggest that the fetal kidney employs a macrophage-dependent compensatory regenerative mechanism to respond to acute injury caused by death of nephron progenitor cells, but that this regenerative response is associated with neonatal interstitial expansion.


Assuntos
Néfrons/patologia , Células-Tronco/patologia , Animais , Animais Recém-Nascidos , Proteínas Reguladoras de Apoptose , Contagem de Células , Morte Celular , Proliferação de Células , Sobrevivência Celular , Embrião de Mamíferos/patologia , Regulação da Expressão Gênica , Fator Estimulador de Colônias de Macrófagos/metabolismo , Macrófagos/metabolismo , Camundongos Endogâmicos C57BL , Néfrons/metabolismo , Proteínas Nucleares/metabolismo , Células-Tronco/metabolismo , Transativadores/metabolismo
13.
Cell Stem Cell ; 22(4): 473-474, 2018 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-29625062

RESUMO

Little is currently known about how cancer stem-like cells (CSCs) interact with their more restricted progeny. In this issue of Cell Stem Cell, Wang et al. (2018) demonstrate a novel bidirectional signaling axis between CSCs and their progeny that is mediated by brain-derived neurotrophic factor and VGF accelerating glioma progression.


Assuntos
Glioblastoma , Glioma , Adulto , Diferenciação Celular , Humanos , Células-Tronco Neoplásicas , Transdução de Sinais
14.
Results Probl Cell Differ ; 60: 137-164, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28409345

RESUMO

New nephrons are induced by the interaction between mesenchymal progenitor cells and collecting duct tips, both of which are located at the outer edge of the kidney. This leading edge of active nephron induction is known as the nephrogenic zone. Cell populations found within this zone include collecting duct tips, cap mesenchyme cells, pretubular aggregates, nephrogenic zone interstitium, hemoendothelial progenitor cells, and macrophages. The close association of these dynamic progenitor cell compartments enables the intricate and synchronized patterning of the epithelial and the vascular components of the nephron. Understanding signaling interactions between the distinct progenitor cells of the nephrogenic zone are essential to determining the basis for new nephron formation, an important goal in regenerative medicine. A variety of technologies have been applied to define essential signaling pathways, including organ culture, mouse genetics, and primary cell culture. This chapter provides an overview of essential signaling pathways and discusses how these may be integrated.


Assuntos
Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Néfrons/embriologia , Organogênese/fisiologia , Transdução de Sinais/fisiologia , Células-Tronco/metabolismo , Animais , Humanos , Rim/embriologia , Células-Tronco/citologia
15.
Dev Cell ; 34(2): 229-41, 2015 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-26190145

RESUMO

FGF, BMP, and WNT balance embryonic nephron progenitor cell (NPC) renewal and differentiation. By modulating these pathways, we have created an in vitro niche in which NPCs from embryonic kidneys or derived from human embryonic stem cells can be propagated. NPC cultures expanded up to one billion-fold in this environment can be induced to form tubules expressing nephron differentiation markers. Single-cell culture reveals phenotypic variability within the early CITED1-expressing NPC compartment, indicating that it is a mixture of cells with varying progenitor potential. Furthermore, we find that the developmental age of NPCs does not correlate with propagation capacity, indicating that cessation of nephrogenesis is related to factors other than an intrinsic clock. This in vitro nephron progenitor niche will have important applications for expansion of cells for engraftment and will facilitate investigation of mechanisms that determine the balance between renewal and differentiation in these cells.


Assuntos
Proteínas Morfogenéticas Ósseas/metabolismo , Fatores de Crescimento de Fibroblastos/metabolismo , Néfrons/embriologia , Proteínas Nucleares/biossíntese , Transativadores/biossíntese , Proteínas Wnt/metabolismo , Animais , Proteínas Reguladoras de Apoptose , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Células-Tronco Embrionárias/citologia , Ativação Enzimática , Proteínas de Homeodomínio/biossíntese , Proteínas de Homeodomínio/genética , Camundongos , Camundongos Endogâmicos ICR , Camundongos Transgênicos , Néfrons/citologia , Proteínas Nucleares/genética , Organogênese , Pirazóis/farmacologia , Pirimidinas/farmacologia , Proteína Smad1/antagonistas & inibidores , Proteína Smad1/metabolismo , Proteína Smad5/antagonistas & inibidores , Proteína Smad5/metabolismo , Transativadores/genética , Fatores de Transcrição/biossíntese , Fatores de Transcrição/genética
16.
Nat Commun ; 6: 10027, 2015 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-26634297

RESUMO

Self-renewal of nephron progenitor cells (NPCs) is governed by BMP, FGF and WNT signalling. Mechanisms underlying cross-talk between these pathways at the molecular level are largely unknown. Here we delineate the pathway through which the proliferative BMP7 signal is transduced in NPCs in the mouse. BMP7 activates the MAPKs TAK1 and JNK to phosphorylate the transcription factor JUN, which in turn governs transcription of AP-1-element containing G1-phase cell cycle regulators such as Myc and Ccnd1 to promote NPC proliferation. Conditional inactivation of Tak1 or Jun in cap mesenchyme causes identical phenotypes characterized by premature depletion of NPCs. While JUN is regulated by BMP7, we find that its partner FOS is regulated by FGF9. We demonstrate that BMP7 and FGF9 coordinately regulate AP-1 transcription to promote G1-S cell cycle progression and NPC proliferation. Our findings identify a molecular mechanism explaining the important cooperation between two major NPC self-renewal pathways.


Assuntos
Proteína Morfogenética Óssea 7/metabolismo , Autorrenovação Celular , Fator 9 de Crescimento de Fibroblastos/metabolismo , Néfrons/citologia , Células-Tronco/metabolismo , Fator de Transcrição AP-1/metabolismo , Animais , Proteína Morfogenética Óssea 7/genética , Diferenciação Celular , Proliferação de Células , Feminino , Fator 9 de Crescimento de Fibroblastos/genética , Rim/embriologia , Rim/metabolismo , Masculino , Camundongos , Néfrons/metabolismo , Transdução de Sinais , Células-Tronco/citologia , Fator de Transcrição AP-1/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA