Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Infect Dis ; 2024 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-38245822

RESUMO

BACKGROUND: Carbapenemase-producing Enterobacterales (CPE) are challenging in healthcare, with resistance to multiple classes of antibiotics. This study describes the emergence of IMP-encoding CPE amongst diverse Enterobacterales species between 2016 and 2019 across a London regional network. METHODS: We performed a network analysis of patient pathways, using electronic health records, to identify contacts between IMP-encoding CPE positive patients. Genomes of IMP-encoding CPE isolates were overlayed with patient contacts to imply potential transmission events. RESULTS: Genomic analysis of 84 Enterobacterales isolates revealed diverse species (predominantly Klebsiella spp, Enterobacter spp, E. coli); 86% (72/84) harboured an IncHI2 plasmid carrying blaIMP and colistin resistance gene mcr-9 (68/72). Phylogenetic analysis of IncHI2 plasmids identified three lineages showing significant association with patient contacts and movements between four hospital sites and across medical specialities, which was missed on initial investigations. CONCLUSIONS: Combined, our patient network and plasmid analyses demonstrate an interspecies, plasmid-mediated outbreak of blaIMPCPE, which remained unidentified during standard investigations. With DNA sequencing and multi-modal data incorporation, the outbreak investigation approach proposed here provides a framework for real-time identification of key factors causing pathogen spread. Plasmid-level outbreak analysis reveals that resistance spread may be wider than suspected, allowing more interventions to stop transmission within hospital networks.

2.
J Proteome Res ; 22(6): 1614-1629, 2023 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-37219084

RESUMO

Japanese encephalitis virus is a leading cause of neurological infection in the Asia-Pacific region with no means of detection in more remote areas. We aimed to test the hypothesis of a Japanese encephalitis (JE) protein signature in human cerebrospinal fluid (CSF) that could be harnessed in a rapid diagnostic test (RDT), contribute to understanding the host response and predict outcome during infection. Liquid chromatography and tandem mass spectrometry (LC-MS/MS), using extensive offline fractionation and tandem mass tag labeling (TMT), enabled comparison of the deep CSF proteome in JE vs other confirmed neurological infections (non-JE). Verification was performed using data-independent acquisition (DIA) LC-MS/MS. 5,070 proteins were identified, including 4,805 human proteins and 265 pathogen proteins. Feature selection and predictive modeling using TMT analysis of 147 patient samples enabled the development of a nine-protein JE diagnostic signature. This was tested using DIA analysis of an independent group of 16 patient samples, demonstrating 82% accuracy. Ultimately, validation in a larger group of patients and different locations could help refine the list to 2-3 proteins for an RDT. The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifier PXD034789 and 10.6019/PXD034789.


Assuntos
Vírus da Encefalite Japonesa (Espécie) , Encefalite Japonesa , Humanos , Encefalite Japonesa/diagnóstico , Cromatografia Líquida/métodos , Proteômica/métodos , Espectrometria de Massas em Tandem/métodos , Proteoma/análise
3.
Bioinformatics ; 37(16): 2347-2355, 2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-33560295

RESUMO

MOTIVATION: A fundamental problem for disease treatment is that while antibiotics are a powerful counter to bacteria, they are ineffective against viruses. Often, bacterial and viral infections are confused due to their similar symptoms and lack of rapid diagnostics. With many clinicians relying primarily on symptoms for diagnosis, overuse and misuse of modern antibiotics are rife, contributing to the growing pool of antibiotic resistance. To ensure an individual receives optimal treatment given their disease state and to reduce over-prescription of antibiotics, the host response can in theory be measured quickly to distinguish between the two states. To establish a predictive biomarker panel of disease state (viral/bacterial/no-infection), we conducted a meta-analysis of human blood infection studies using machine learning. RESULTS: We focused on publicly available gene expression data from two widely used platforms, Affymetrix and Illumina microarrays as they represented a significant proportion of the available data. We were able to develop multi-class models with high accuracies with our best model predicting 93% of bacterial and 89% viral samples correctly. To compare the selected features in each of the different technologies, we reverse-engineered the underlying molecular regulatory network and explored the neighbourhood of the selected features. The networks highlighted that although on the gene-level the models differed, they contained genes from the same areas of the network. Specifically, this convergence was to pathways including the Type I interferon Signalling Pathway, Chemotaxis, Apoptotic Processes and Inflammatory/Innate Response. AVAILABILITY: Data and code are available on the Gene Expression Omnibus and github. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.

4.
BMC Infect Dis ; 21(1): 932, 2021 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-34496795

RESUMO

BACKGROUND: To characterise the longitudinal dynamics of C-reactive protein (CRP) and Procalcitonin (PCT) in a cohort of hospitalised patients with COVID-19 and support antimicrobial decision-making. METHODS: Longitudinal CRP and PCT concentrations and trajectories of 237 hospitalised patients with COVID-19 were modelled. The dataset comprised of 2,021 data points for CRP and 284 points for PCT. Pairwise comparisons were performed between: (i) those with or without significant bacterial growth from cultures, and (ii) those who survived or died in hospital. RESULTS: CRP concentrations were higher over time in COVID-19 patients with positive microbiology (day 9: 236 vs 123 mg/L, p < 0.0001) and in those who died (day 8: 226 vs 152 mg/L, p < 0.0001) but only after day 7 of COVID-related symptom onset. Failure for CRP to reduce in the first week of hospital admission was associated with significantly higher odds of death. PCT concentrations were higher in patients with COVID-19 and positive microbiology or in those who died, although these differences were not statistically significant. CONCLUSIONS: Both the absolute CRP concentration and the trajectory during the first week of hospital admission are important factors predicting microbiology culture positivity and outcome in patients hospitalised with COVID-19. Further work is needed to describe the role of PCT for co-infection. Understanding relationships of these biomarkers can support development of risk models and inform optimal antimicrobial strategies.


Assuntos
COVID-19 , Pró-Calcitonina , Antibacterianos , Proteína C-Reativa , Humanos , SARS-CoV-2
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA