Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Appl Microbiol Biotechnol ; 97(7): 3085-96, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23053090

RESUMO

Dramatic increase in bacterial resistance towards conventional antibiotics emphasises the importance to identify novel, more potent antimicrobial therapies. Antimicrobial peptides (AMPs) have emerged as a promising new group to be evaluated in therapeutic intervention of infectious diseases. Here we describe a novel AMP, PXL150, which demonstrates in vitro a broad spectrum microbicidal action against both Gram-positive and Gram-negative bacteria, including resistant strains. The potent microbicidal activity and broad antibacterial spectrum of PXL150 were not associated with any hemolytic activity. Staphylococcus aureus and methicillin-resistant S. aureus (MRSA) failed to develop resistance towards PXL150 during continued selection pressure. PXL150 caused a rapid depolarisation of cytoplasmic membrane of S. aureus, and dissipating membrane potential is likely one mechanism for PXL150 to kill its target bacteria. Studies in human cell lines indicated that PXL150 has anti-inflammatory properties, which might be of additional benefit. PXL150 demonstrated pronounced anti-infectious effect in an in vivo model of full thickness wounds infected with MRSA in rats and in an ex vivo model of pig skin infected with S. aureus. Subcutaneous or topical application of the peptide in rats did not lead to any adverse reactions. In conclusion, PXL150 may constitute a new therapeutic alternative for local treatment of infections, and further studies are warranted to evaluate the applicability of this AMP in clinical settings.


Assuntos
Peptídeos Catiônicos Antimicrobianos/administração & dosagem , Infecções dos Tecidos Moles/tratamento farmacológico , Infecções Estafilocócicas/tratamento farmacológico , Infecções Cutâneas Estafilocócicas/tratamento farmacológico , Infecção dos Ferimentos/tratamento farmacológico , Administração Tópica , Animais , Peptídeos Catiônicos Antimicrobianos/efeitos adversos , Peptídeos Catiônicos Antimicrobianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/toxicidade , Linhagem Celular , Membrana Celular/efeitos dos fármacos , Modelos Animais de Doenças , Eritrócitos , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Hemólise , Humanos , Testes de Sensibilidade Microbiana , Viabilidade Microbiana/efeitos dos fármacos , Ratos , Infecções dos Tecidos Moles/microbiologia , Infecções Estafilocócicas/microbiologia , Infecções Cutâneas Estafilocócicas/microbiologia , Suínos , Infecção dos Ferimentos/microbiologia
2.
AMB Express ; 2(1): 67, 2012 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-23237525

RESUMO

Bacterial resistance against antibiotic treatment has become a major threat to public health. Antimicrobial peptides (AMPs) have emerged as promising alternative agents for treatment of infectious diseases. This study characterizes novel synthetic peptides sequentially derived from the AMP centrocin 1, isolated from the green sea urchin, for their applicability as anti-infective agents.The microbicidal effect of centrocin 1 heavy chain (CEN1 HC-Br), its debrominated analogue (CEN1 HC), the C-terminal truncated variants of both peptides, i.e. CEN1 HC-Br (1-20) and CEN1 HC (1-20), as well as the cysteine to serine substituted equivalent CEN1 HC (Ser) was evaluated using minimal microbicidal concentration assay. The anti-inflammatory properties were assessed by measuring the inhibition of secretion of pro-inflammatory cytokines. All the peptides tested exhibited marked microbicidal and anti-inflammatory properties. No difference in efficacy was seen comparing CEN1 HC-Br and CEN1 HC, while the brominated variant had higher cytotoxicity. C-terminal truncation of both peptides reduced salt-tolerability of the microbicidal effect as well as anti-inflammatory actions. Also, serine substitution of cysteine residue decreased the microbicidal effect. Thus, from the peptide variants tested, CEN1 HC showed the best efficacy and safety profile. Further, CEN1 HC significantly reduced bacterial counts in two different animal models of infected wounds, while Staphylococcus aureus and methicillin-resistant S. aureus (MRSA) failed to develop resistance against this peptide under continued selection pressure. In summary, CEN1 HC appears a promising new antimicrobial agent, and clinical studies are warranted to evaluate the applicability of this AMP for local treatment of infections in man.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA