Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 118
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Pflugers Arch ; 2024 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-38396259

RESUMO

Transmembrane prolyl 4-hydroxylase (P4H-TM) is an enigmatic enzyme whose cellular function and primary substrate remain to be identified. Its loss-of-function mutations cause a severe neurological HIDEA syndrome with hypotonia, intellectual disability, dysautonomia and hypoventilation. Previously, P4H-TM deficiency in mice was associated with reduced atherogenesis and lower serum triglyceride levels. Here, we characterized the glucose and lipid metabolism of P4h-tm-/- mice in physiological and tissue analyses. P4h-tm-/- mice showed variations in 24-h oscillations of energy expenditure, VO2 and VCO2 and locomotor activity compared to wild-type (WT) mice. Their rearing activity was reduced, and they showed significant muscle weakness and compromised coordination. Sedated P4h-tm-/- mice had better glucose tolerance, lower fasting insulin levels, higher fasting lactate levels and lower fasting free fatty acid levels compared to WT. These alterations were not present in conscious P4h-tm-/- mice. Fasted P4h-tm-/- mice presented with faster hepatic glycogenolysis. The respiratory rate of conscious P4h-tm-/- mice was significantly lower compared to the WT, the decrease being further exacerbated by sedation and associated with acidosis and a reduced ventilatory response to both hypoxia and hypercapnia. P4H-TM deficiency in mice is associated with alterations in whole-body energy metabolism, day-night rhythm of activity, glucose homeostasis and neuromuscular and respiratory functions. Although the underlying mechanism(s) are not yet fully understood, the phenotype appears to have neurological origins, controlled by brain and central nervous system circuits. The phenotype of P4h-tm-/- mice recapitulates some of the symptoms of HIDEA patients, making this mouse model a valuable tool to study and develop tailored therapies.

2.
J Biol Chem ; 298(4): 101787, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35247391

RESUMO

Hypoxia-inducible factors (HIFs) induce numerous genes regulating oxygen homeostasis. As oxygen sensors of the cells, the HIF prolyl 4-hydroxylases (HIF-P4Hs) regulate the stability of HIFs in an oxygen-dependent manner. During hair follicle (HF) morphogenesis and cycling, the location of dermal papilla (DP) alternates between the dermis and hypodermis and results in varying oxygen levels for the DP cells. These cells are known to express hypoxia-inducible genes, but the role of the hypoxia response pathway in HF development and homeostasis has not been studied. Using conditional gene targeting and analysis of hair morphogenesis, we show here that lack of Hif-p4h-2 in Forkhead box D1 (FoxD1)-lineage mesodermal cells interferes with the normal HF development in mice. FoxD1-lineage cells were found to be mainly mesenchymal cells located in the dermis of truncal skin, including those cells composing the DP of HFs. We found that upon Hif-p4h-2 inactivation, HF development was disturbed during the first catagen leading to formation of epithelial-lined HF cysts filled by unorganized keratins, which eventually manifested as truncal alopecia. Furthermore, the depletion of Hif-p4h-2 led to HIF stabilization and dysregulation of multiple genes involved in keratin formation, HF differentiation, and HIF, transforming growth factor ß (TGF-ß), and Notch signaling. We hypothesize that the failure of HF cycling is likely to be mechanistically caused by disruption of the interplay of the HIF, TGF-ß, and Notch pathways. In summary, we show here for the first time that HIF-P4H-2 function in FoxD1-lineage cells is essential for the normal development and homeostasis of HFs.


Assuntos
Alopecia , Prolina Dioxigenases do Fator Induzível por Hipóxia , Alopecia/enzimologia , Alopecia/genética , Animais , Prolina Dioxigenases do Fator Induzível por Hipóxia/genética , Prolina Dioxigenases do Fator Induzível por Hipóxia/metabolismo , Camundongos , Oxigênio/metabolismo , Fator de Crescimento Transformador beta
3.
J Biol Chem ; 298(8): 102222, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35787374

RESUMO

Hypoxia-inducible factor (HIF) prolyl 4-hydroxylases (HIF-P4Hs 1-3) are druggable targets in renal anemia, where pan-HIF-P4H inhibitors induce an erythropoietic response. Preclinical data suggest that HIF-P4Hs could also be therapeutic targets for treating metabolic dysfunction, although the contributions of HIF-P4H isoenzymes in various tissues to the metabolic phenotype are inadequately understood. Here, we used mouse lines that were gene-deficient for HIF-P4Hs 1 to 3 and two preclinical pan-HIF-P4H inhibitors to study the contributions of these isoenzymes to the anthropometric and metabolic outcome and HIF response. We show both inhibitors induced a HIF response in wildtype white adipose tissue (WAT), liver, and skeletal muscle and alleviated metabolic dysfunction during a 6-week treatment period, but they did not alter healthy metabolism. Our data indicate that HIF-P4H-1 contributed especially to skeletal muscle and WAT metabolism and that its loss lowered body weight and serum cholesterol levels upon aging. In addition, we found HIF-P4H-3 had effects on the liver and WAT and its loss increased body weight, adiposity, liver weight and triglyceride levels, WAT inflammation, and cholesterol levels and resulted in hyperglycemia and insulin resistance, especially during aging. Finally, we demonstrate HIF-P4H-2 affected all tissues studied; its inhibition lowered body and liver weight and serum cholesterol levels and improved glucose tolerance. We found very few HIF target metabolic mRNAs were regulated by the inhibition of three isoenzymes, thus suggesting a potential for selective therapeutic tractability. Altogether, these data provide specifications for the future development of HIF-P4H inhibitors for the treatment of metabolic diseases.


Assuntos
Prolina Dioxigenases do Fator Induzível por Hipóxia , Isoenzimas , Tecido Adiposo Branco/metabolismo , Envelhecimento/metabolismo , Animais , Peso Corporal , Colesterol/sangue , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Prolina Dioxigenases do Fator Induzível por Hipóxia/antagonistas & inibidores , Prolina Dioxigenases do Fator Induzível por Hipóxia/metabolismo , Resistência à Insulina , Isoenzimas/antagonistas & inibidores , Isoenzimas/metabolismo , Fígado/metabolismo , Camundongos , Músculo Esquelético/metabolismo , Obesidade/metabolismo
4.
J Biol Chem ; 298(3): 101721, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35151685

RESUMO

Hypoxia-inducible factor prolyl 4-hydroxylases (HIF-P4Hs) regulate the hypoxic induction of >300 genes required for survival and adaptation under oxygen deprivation. Inhibition of HIF-P4H-2 has been shown to be protective in focal cerebral ischemia rodent models, while that of HIF-P4H-1 has no effects and inactivation of HIF-P4H-3 has adverse effects. A transmembrane prolyl 4-hydroxylase (P4H-TM) is highly expressed in the brain and contributes to the regulation of HIF, but the outcome of its inhibition on stroke is yet unknown. To study this, we subjected WT and P4htm-/- mice to permanent middle cerebral artery occlusion (pMCAO). Lack of P4H-TM had no effect on lesion size following pMCAO, but increased inflammatory microgliosis and neutrophil infiltration was observed in the P4htm-/- cortex. Furthermore, both the permeability of blood brain barrier and ultrastructure of cerebral tight junctions were compromised in P4htm-/- mice. At the molecular level, P4H-TM deficiency led to increased expression of proinflammatory genes and robust activation of protein kinases in the cortex, while expression of tight junction proteins and the neuroprotective growth factors erythropoietin and vascular endothelial growth factor was reduced. Our data provide the first evidence that P4H-TM inactivation has no protective effect on infarct size and increases inflammatory microgliosis and neutrophil infiltration in the cortex at early stage after pMCAO. When considering HIF-P4H inhibitors as potential therapeutics in stroke, the current data support that isoenzyme-selective inhibitors that do not target P4H-TM or HIF-P4H-3 would be preferred.


Assuntos
Barreira Hematoencefálica , Infarto da Artéria Cerebral Média , Doenças Neuroinflamatórias , Prolil Hidroxilases , Acidente Vascular Cerebral , Animais , Barreira Hematoencefálica/enzimologia , Barreira Hematoencefálica/metabolismo , Permeabilidade da Membrana Celular , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Infarto da Artéria Cerebral Média/enzimologia , Infarto da Artéria Cerebral Média/metabolismo , Camundongos , Doenças Neuroinflamatórias/enzimologia , Doenças Neuroinflamatórias/metabolismo , Permeabilidade , Prolil Hidroxilases/metabolismo , Inibidores de Prolil-Hidrolase/farmacologia , Acidente Vascular Cerebral/enzimologia , Acidente Vascular Cerebral/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
5.
J Biol Chem ; 298(12): 102614, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36265586

RESUMO

Collagen prolyl 4-hydroxylases (C-P4H) are α2ß2 tetramers, which catalyze the prolyl 4-hydroxylation of procollagen, allowing for the formation of the stable triple-helical collagen structure in the endoplasmic reticulum. The C-P4H α-subunit provides the N-terminal dimerization domain, the middle peptide-substrate-binding (PSB) domain, and the C-terminal catalytic (CAT) domain, whereas the ß-subunit is identical to the enzyme protein disulfide isomerase (PDI). The structure of the N-terminal part of the α-subunit (N-terminal region and PSB domain) is known, but the structures of the PSB-CAT linker region and the CAT domain as well as its mode of assembly with the ß/PDI subunit, are unknown. Here, we report the crystal structure of the CAT domain of human C-P4H-II complexed with the intact ß/PDI subunit, at 3.8 Å resolution. The CAT domain interacts with the a, b', and a' domains of the ß/PDI subunit, such that the CAT active site is facing bulk solvent. The structure also shows that the C-P4H-II CAT domain has a unique N-terminal extension, consisting of α-helices and a ß-strand, which is the edge strand of its major antiparallel ß-sheet. This extra region of the CAT domain interacts tightly with the ß/PDI subunit, showing that the CAT-PDI interface includes an intersubunit disulfide bridge with the a' domain and tight hydrophobic interactions with the b' domain. Using this new information, the structure of the mature C-P4H-II α2ß2 tetramer is predicted. The model suggests that the CAT active-site properties are modulated by α-helices of the N-terminal dimerization domains of both subunits of the α2-dimer.


Assuntos
Prolil Hidroxilases , Isomerases de Dissulfetos de Proteínas , Humanos , Domínio Catalítico , Colágeno/metabolismo , Peptídeos/metabolismo , Pró-Colágeno-Prolina Dioxigenase/metabolismo , Prolil Hidroxilases/metabolismo , Isomerases de Dissulfetos de Proteínas/metabolismo , Conformação Proteica
6.
Cell Mol Life Sci ; 79(8): 432, 2022 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-35852609

RESUMO

Alzheimer's disease (AD) is the most common cause of dementia with limited treatment options affecting millions of people and the prevalence increasing with the aging population. The current knowledge on the role of the hypoxia/hypoxia-inducible factor (HIF) in the AD pathology is restricted and controversial. We hypothesized based on benefits of the genetic long-term inactivation of HIF prolyl 4-hydroxylase-2 (HIF-P4H-2) on metabolism, vasculature and inflammatory response that prolonged moderate activation of the hypoxia response could hinder AD pathology. We used an aging model to study potential spontaneous accumulation of amyloid-ß (Aß) in HIF-P4H-2-deficient mice and a transgenic APP/PSEN1 mouse model subjected to prolonged sustained environmental hypoxia (15% O2 for 6 weeks) at two different time points of the disease; at age of 4 and 10 months. In both settings, activation of the hypoxia response reduced brain protein aggregate levels and this associated with higher vascularity. In the senescent HIF-P4H-2-deficient mice metabolic reprogramming also contributed to less protein aggregates while in APP/PSEN1 mice lesser Aß associated additionally with hypoxia-mediated favorable responses to neuroinflammation and amyloid precursor protein processing. In conclusion, continuous, non-full-scale activation of the HIF pathway appears to mediate protection against neurodegeneration via several mechanisms and should be studied as a treatment option for AD.


Assuntos
Doença de Alzheimer , Precursor de Proteína beta-Amiloide , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/genética , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Modelos Animais de Doenças , Humanos , Hipóxia/genética , Camundongos , Camundongos Transgênicos
7.
J Mol Cell Cardiol ; 164: 148-155, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34919895

RESUMO

AIMS: We have previously demonstrated protection against obesity, metabolic dysfunction, atherosclerosis and cardiac ischemia in a hypoxia-inducible factor (HIF) prolyl 4-hydroxylase-2 (Hif-p4h-2) deficient mouse line, attributing these protective effects to activation of the hypoxia response pathway in a normoxic environment. We intended here to find out whether the Hif-p4h-2 deficiency affects the cardiac health of these mice upon aging. METHODS AND RESULTS: When the Hif-p4h-2 deficient mice and their wild-type littermates were monitored during normal aging, the Hif-p4h-2 deficient mice had better preserved diastolic function than the wild type at one year of age and less cardiomyocyte hypertrophy at two years. On the mRNA level, downregulation of hypertrophy-associated genes was detected and shown to be associated with upregulation of Notch signaling, and especially of the Notch target gene and transcriptional repressor Hairy and enhancer-of-split-related basic helix-loop-helix (Hey2). Blocking of Notch signaling in cardiomyocytes isolated from Hif-p4h-2 deficient mice with a gamma-secretase inhibitor led to upregulation of the hypertrophy-associated genes. Also, targeting Hey2 in isolated wild-type rat neonatal cardiomyocytes with siRNA led to upregulation of hypertrophic genes and increased leucine incorporation indicative of increased protein synthesis and hypertrophy. Finally, oral treatment of wild-type mice with a small molecule inhibitor of HIF-P4Hs phenocopied the effects of Hif-p4h-2 deficiency with less cardiomyocyte hypertrophy, upregulation of Hey2 and downregulation of the hypertrophy-associated genes. CONCLUSIONS: These results indicate that activation of the hypoxia response pathway upregulates Notch signaling and its target Hey2 resulting in transcriptional repression of hypertrophy-associated genes and less cardiomyocyte hypertrophy. This is eventually associated with better preserved cardiac function upon aging. Activation of the hypoxia response pathway thus has therapeutic potential for combating age-induced cardiac hypertrophy.


Assuntos
Cardiomegalia , Hipóxia , Transdução de Sinais , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Cardiomegalia/genética , Cardiomegalia/metabolismo , Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Prolina Dioxigenases do Fator Induzível por Hipóxia/genética , Prolina Dioxigenases do Fator Induzível por Hipóxia/metabolismo , Camundongos , Ratos
8.
J Biol Chem ; 296: 100197, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33334883

RESUMO

Prolyl 4-hydroxylases (P4Hs) catalyze post-translational hydroxylation of peptidyl proline residues. In addition to collagen P4Hs and hypoxia-inducible factor P4Hs, a third P4H-the poorly characterized endoplasmic reticulum-localized transmembrane prolyl 4-hydroxylase (P4H-TM)-is found in animals. P4H-TM variants are associated with the familiar neurological HIDEA syndrome, but how these variants might contribute to disease is unknown. Here, we explored this question in a structural and functional analysis of soluble human P4H-TM. The crystal structure revealed an EF domain with two Ca2+-binding motifs inserted within the catalytic domain. A substrate-binding groove was formed between the EF domain and the conserved core of the catalytic domain. The proximity of the EF domain to the active site suggests that Ca2+ binding is relevant to the catalytic activity. Functional analysis demonstrated that Ca2+-binding affinity of P4H-TM is within the range of physiological Ca2+ concentration in the endoplasmic reticulum. P4H-TM was found both as a monomer and a dimer in the solution, but the monomer-dimer equilibrium was not regulated by Ca2+. The catalytic site contained bound Fe2+ and N-oxalylglycine, which is an analogue of the cosubstrate 2-oxoglutarate. Comparison with homologous P4H structures complexed with peptide substrates showed that the substrate-interacting residues and the lid structure that folds over the substrate are conserved in P4H-TM, whereas the extensive loop structures that surround the substrate-binding groove, generating a negative surface potential, are different. Analysis of the structure suggests that the HIDEA variants cause loss of P4H-TM function. In conclusion, P4H-TM shares key structural elements with other P4Hs while having a unique EF domain.


Assuntos
Dioxigenases/química , Prolil Hidroxilases/química , Cristalografia por Raios X , Motivos EF Hand , Humanos , Modelos Moleculares , Conformação Proteica , Domínios Proteicos
9.
J Biol Chem ; 296: 100453, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33631195

RESUMO

Collagen is the most abundant protein in humans. It has a characteristic triple-helix structure and is heavily posttranslationally modified. The complex biosynthesis of collagen involves processing by many enzymes and chaperones in the rough endoplasmic reticulum. Lysyl hydroxylase 1 (LH1) is required to hydroxylate lysine for cross-linking and carbohydrate attachment within collagen triple helical sequences. Additionally, a recent study of prolyl 3-hydroxylase 3 (P3H3) demonstrated that this enzyme may be critical for LH1 activity; however, the details surrounding its involvement remain unclear. If P3H3 is an LH1 chaperone that is critical for LH1 activity, P3H3 and LH1 null mice should display a similar deficiency in lysyl hydroxylation. To test this hypothesis, we compared the amount and location of hydroxylysine in the triple helical domains of type V and I collagen from P3H3 null, LH1 null, and wild-type mice. The amount of hydroxylysine in type V collagen was reduced in P3H3 null mice, but surprisingly type V collagen from LH1 null mice contained as much hydroxylysine as type V collagen from wild-type mice. In type I collagen, our results indicate that LH1 plays a global enzymatic role in lysyl hydroxylation. P3H3 is also involved in lysyl hydroxylation, particularly at cross-link formation sites, but is not required for all lysyl hydroxylation sites. In summary, our study suggests that LH1 and P3H3 likely have two distinct mechanisms to recognize different collagen types and to distinguish cross-link formation sites from other sites in type I collagen.


Assuntos
Colágeno Tipo I/metabolismo , Colágeno Tipo V/metabolismo , Pró-Colágeno-Lisina 2-Oxoglutarato 5-Dioxigenase/metabolismo , Pró-Colágeno-Prolina Dioxigenase/metabolismo , Animais , Colágeno/genética , Colágeno/metabolismo , Colágeno Tipo I/genética , Colágeno Tipo V/genética , Retículo Endoplasmático Rugoso/metabolismo , Hidroxilação , Hidroxilisina/metabolismo , Lisina/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pró-Colágeno-Prolina Dioxigenase/genética , Conformação Proteica , Processamento de Proteína Pós-Traducional/genética
10.
Angiogenesis ; 25(2): 259-274, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34997404

RESUMO

Hypoxia plays an important regulatory role in the vasculature to adjust blood flow to meet metabolic requirements. At the level of gene transcription, the responses are mediated by hypoxia-inducible factor (HIF) the stability of which is controlled by the HIF prolyl 4-hydroxylase-2 (PHD2). In the lungs hypoxia results in vasoconstriction, however, the pathophysiological relevance of PHD2 in the major arterial cell types; endothelial cells (ECs) and arterial smooth muscle cells (aSMCs) in the adult vasculature is incompletely characterized. Here, we investigated PHD2-dependent vascular homeostasis utilizing inducible deletions of PHD2 either in ECs (Phd2∆ECi) or in aSMCs (Phd2∆aSMC). Cardiovascular function and lung pathologies were studied using echocardiography, Doppler ultrasonography, intraventricular pressure measurement, histological, ultrastructural, and transcriptional methods. Cell intrinsic responses were investigated in hypoxia and in conditions mimicking hypertension-induced hemodynamic stress. Phd2∆ECi resulted in progressive pulmonary disease characterized by a thickened respiratory basement membrane (BM), alveolar fibrosis, increased pulmonary artery pressure, and adaptive hypertrophy of the right ventricle (RV). A low oxygen environment resulted in alterations in cultured ECs similar to those in Phd2∆ECi mice, involving BM components and vascular tone regulators favoring the contraction of SMCs. In contrast, Phd2∆aSMC resulted in elevated RV pressure without alterations in vascular tone regulators. Mechanistically, PHD2 inhibition in aSMCs involved  actin polymerization -related tension development via activated cofilin. The results also indicated that hemodynamic stress, rather than PHD2-dependent hypoxia response alone, potentiates structural remodeling of the extracellular matrix in the pulmonary microvasculature and respiratory failure.


Assuntos
Hipertensão Pulmonar , Animais , Artérias/metabolismo , Células Endoteliais/metabolismo , Fibrose , Hipertensão Pulmonar/genética , Hipertensão Pulmonar/metabolismo , Hipertensão Pulmonar/patologia , Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Prolina Dioxigenases do Fator Induzível por Hipóxia/genética , Prolina Dioxigenases do Fator Induzível por Hipóxia/metabolismo , Camundongos , Miócitos de Músculo Liso/patologia , Prolil Hidroxilases/metabolismo
12.
J Biol Chem ; 295(50): 17158-17168, 2020 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-33023907

RESUMO

Cellular energy demands are met by uptake and metabolism of nutrients like glucose. The principal transcriptional regulator for adapting glycolytic flux and downstream pathways like de novo lipogenesis to glucose availability in many cell types is carbohydrate response element-binding protein (ChREBP). ChREBP is activated by glucose metabolites and post-translational modifications, inducing nuclear accumulation and regulation of target genes. Here we report that ChREBP is modified by proline hydroxylation at several residues. Proline hydroxylation targets both ectopically expressed ChREBP in cells and endogenous ChREBP in mouse liver. Functionally, we found that specific hydroxylated prolines were dispensable for protein stability but required for the adequate activation of ChREBP upon exposure to high glucose. Accordingly, ChREBP target gene expression was rescued by re-expressing WT but not ChREBP that lacks hydroxylated prolines in ChREBP-deleted hepatocytes. Thus, proline hydroxylation of ChREBP is a novel post-translational modification that may allow for therapeutic interference in metabolic diseases.


Assuntos
Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/biossíntese , Regulação da Expressão Gênica , Glucose/metabolismo , Fígado/metabolismo , Processamento de Proteína Pós-Traducional , Animais , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Células HEK293 , Humanos , Hidroxilação , Masculino , Doenças Metabólicas/genética , Doenças Metabólicas/metabolismo , Camundongos , Camundongos Transgênicos , Prolina/genética , Prolina/metabolismo
13.
Hum Mol Genet ; 28(19): 3309-3322, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31294445

RESUMO

The Finnish-variant late infantile neuronal ceroid lipofuscinosis, also known as CLN5 disease, is caused by mutations in the CLN5 gene. Cln5 is strongly expressed in the developing brain and expression continues into adulthood. CLN5, a protein of unknown function, is implicated in neurodevelopment but detailed investigation is lacking. Using Cln5-/- embryos of various ages and cells harvested from Cln5-/- brains we investigated the hitherto unknown role of Cln5 in the developing brain. Loss of Cln5 results in neuronal differentiation deficits and delays in interneuron development during in utero period. Specifically, the radial thickness of dorsal telencephalon was significantly decreased in Cln5-/- mouse embryos at embryonic day 14.5 (E14.5), and expression of Tuj1, an important neuronal marker during development, was down-regulated. An interneuron marker calbindin and a mitosis marker p-H3 showed down-regulation in ganglionic eminences. Neurite outgrowth was compromised in primary cortical neuronal cultures derived from E16 Cln5-/- embryos compared with WT embryos. We show that the developmental deficits of interneurons may be linked to increased levels of the repressor element 1-silencing transcription factor, which we report to bind to glutamate decarboxylase (Gad1), which encodes GAD67, a rate-limiting enzyme in the production of gamma-aminobutyric acid (GABA). Indeed, adult Cln5-/- mice presented deficits in hippocampal parvalbumin-positive interneurons. Furthermore, adult Cln5-/- mice presented deficits in hippocampal parvalbumin-positive interneurons and showed age-independent cortical hyper excitability as measured by electroencephalogram and auditory-evoked potentials. This study highlights the importance of Cln5 in neurodevelopment and suggests that in contrast to earlier reports, CLN5 disease is likely to develop during embryonic stages.


Assuntos
Encéfalo/crescimento & desenvolvimento , Glutamato Descarboxilase/genética , Interneurônios/metabolismo , Proteínas de Membrana Lisossomal/genética , Lipofuscinoses Ceroides Neuronais/genética , Animais , Encéfalo/metabolismo , Diferenciação Celular , Linhagem Celular , Células Cultivadas , Embrião de Mamíferos/metabolismo , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Masculino , Camundongos , Lipofuscinoses Ceroides Neuronais/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Parvalbuminas/metabolismo , Proteínas Repressoras/genética , Tubulina (Proteína)/metabolismo
14.
Exp Dermatol ; 30(1): 38-49, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32969070

RESUMO

Collagens are the most abundant proteins in the extracellular matrix. They provide a framework to build organs and tissues and give structural support to make them resistant to mechanical load and forces. Several intra- and extracellular modifications are needed to make functional collagen molecules, intracellular post-translational modifications of proline and lysine residues having key roles in this. In this article, we provide a review on the enzymes responsible for the proline and lysine modifications, that is collagen prolyl 4-hydroxylases, 3-hydroxylases and lysyl hydroxylases, and discuss their biological functions and involvement in diseases.


Assuntos
Colágeno/biossíntese , Doenças do Tecido Conjuntivo/enzimologia , Doenças do Tecido Conjuntivo/genética , Pró-Colágeno-Lisina 2-Oxoglutarato 5-Dioxigenase/metabolismo , Pró-Colágeno-Prolina Dioxigenase/metabolismo , Animais , Modelos Animais de Doenças , Glicosilação , Humanos , Hidroxilação , Pró-Colágeno-Lisina 2-Oxoglutarato 5-Dioxigenase/genética , Pró-Colágeno-Prolina Dioxigenase/genética
15.
FASEB J ; 34(4): 5590-5609, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32100354

RESUMO

Hypoxia inactivates hypoxia-inducible factor (HIF) prolyl 4-hydroxylases (HIF-P4Hs), which stabilize HIF and upregulate genes to restore tissue oxygenation. HIF-P4Hs can also be inhibited by small molecules studied in clinical trials for renal anemia. Knowledge of systemic long-term inactivation of HIF-P4Hs is limited but crucial, since HIF overexpression is associated with cancers. We aimed to determine the effects of systemic genetic inhibition of the most abundant isoenzyme HIF prolyl 4-hydroxylase-2 (HIF-P4H-2)/PHD2/EglN1 on life span and tissue homeostasis in aged mice. Our data showed no difference between wild-type and HIF-P4H-2-deficient mice in the average age reached. There were several differences, however, in the primary causes of death and comorbidities, the HIF-P4H-2-deficient mice having less inflammation, liver diseases, including cancer, and myocardial infarctions, and not developing anemia. No increased cancer incidence was observed due to HIF-P4H-2-deficiency. These data suggest that chronic inactivation of HIF-P4H-2 is not harmful but rather improves the quality of life in senescence.


Assuntos
Carcinoma Hepatocelular/prevenção & controle , Prolina Dioxigenases do Fator Induzível por Hipóxia/antagonistas & inibidores , Inflamação/prevenção & controle , Nefropatias/prevenção & controle , Hepatopatias/prevenção & controle , Neoplasias Hepáticas Experimentais/prevenção & controle , Animais , Carcinoma Hepatocelular/etiologia , Carcinoma Hepatocelular/patologia , Feminino , Inflamação/etiologia , Inflamação/patologia , Nefropatias/etiologia , Nefropatias/patologia , Hepatopatias/etiologia , Hepatopatias/patologia , Neoplasias Hepáticas Experimentais/etiologia , Neoplasias Hepáticas Experimentais/patologia , Longevidade , Masculino , Camundongos , Camundongos Knockout
16.
Cell Mol Life Sci ; 77(18): 3627-3642, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31768607

RESUMO

Hypoxia-inducible factor (HIF), an αß dimer, is the master regulator of oxygen homeostasis with hundreds of hypoxia-inducible target genes. Three HIF isoforms differing in the oxygen-sensitive α subunit exist in vertebrates. While HIF-1 and HIF-2 are known transcription activators, HIF-3 has been considered a negative regulator of the hypoxia response pathway. However, the human HIF3A mRNA is subject to complex alternative splicing. It was recently shown that the long HIF-3α variants can form αß dimers that possess transactivation capacity. Here, we show that overexpression of the long HIF-3α2 variant induces the expression of a subset of genes, including the erythropoietin (EPO) gene, while simultaneous downregulation of all HIF-3α variants by siRNA targeting a shared HIF3A region leads to downregulation of EPO and additional genes. EPO mRNA and protein levels correlated with HIF3A silencing and HIF-3α2 overexpression. Chromatin immunoprecipitation analyses showed that HIF-3α2 binding associated with canonical hypoxia response elements in the promoter regions of EPO. Luciferase reporter assays showed that the identified HIF-3α2 chromatin-binding regions were sufficient to promote transcription by all three HIF-α isoforms. Based on these data, HIF-3α2 is a transcription activator that directly regulates EPO expression.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Eritropoetina/metabolismo , Proteínas Repressoras/metabolismo , Proteínas Reguladoras de Apoptose/antagonistas & inibidores , Proteínas Reguladoras de Apoptose/genética , Proteína Morfogenética Óssea 6/genética , Proteína Morfogenética Óssea 6/metabolismo , Proteína C-Reativa/genética , Proteína C-Reativa/metabolismo , Hipóxia Celular , Linhagem Celular Tumoral , Cromatina/metabolismo , Dimerização , Eritropoetina/análise , Eritropoetina/genética , Transportador de Glucose Tipo 1/genética , Transportador de Glucose Tipo 1/metabolismo , Humanos , Regiões Promotoras Genéticas , Ligação Proteica , Isoformas de Proteínas/antagonistas & inibidores , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Interferência de RNA , Splicing de RNA , RNA Interferente Pequeno/metabolismo , Proteínas Repressoras/antagonistas & inibidores , Proteínas Repressoras/genética , Componente Amiloide P Sérico/genética , Componente Amiloide P Sérico/metabolismo , Ativação Transcricional
17.
Int J Mol Sci ; 22(8)2021 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-33919829

RESUMO

The HIF prolyl 4-hydroxylases (HIF-P4H) control hypoxia-inducible factor (HIF), a powerful mechanism regulating cellular adaptation to decreased oxygenation. The gastrointestinal epithelium subsists in "physiological hypoxia" and should therefore have an especially well-designed control over this adaptation. Thus, we assessed the absolute mRNA expression levels of the HIF pathway components, Hif1a, HIF2a, Hif-p4h-1, 2 and 3 and factor inhibiting HIF (Fih1) in murine jejunum, caecum and colon epithelium using droplet digital PCR. We found a higher expression of all these genes towards the distal end of the gastrointestinal tract. We detected mRNA for Hif-p4h-1, 2 and 3 in all parts of the gastrointestinal tract. Hif-p4h-2 had significantly higher expression levels compared to Hif-p4h-1 and 3 in colon and caecum epithelium. To test the roles each HIF-P4H isoform plays in the gut epithelium, we measured the gene expression of classical HIF target genes in Hif-p4h-1-/-, Hif-p4h-2 hypomorph and Hif-p4h-3-/- mice. Only Hif-p4h-2 hypomorphism led to an upregulation of HIF target genes, confirming a predominant role of HIF-P4H-2. However, the abundance of Hif-p4h-1 and 3 expression in the gastrointestinal epithelium implies that these isoforms may have specific functions as well. Thus, the development of selective inhibitors might be useful for diverging therapeutic needs.


Assuntos
Regulação Enzimológica da Expressão Gênica , Prolina Dioxigenases do Fator Induzível por Hipóxia/genética , Hipóxia/enzimologia , Hipóxia/genética , Mucosa Intestinal/enzimologia , Envelhecimento/metabolismo , Animais , Ceco/metabolismo , Prolina Dioxigenases do Fator Induzível por Hipóxia/metabolismo , Isoenzimas/metabolismo , Jejuno/metabolismo , Camundongos Endogâmicos C57BL , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução de Sinais
18.
J Cell Sci ; 131(10)2018 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-29685894

RESUMO

Hypoxia and loss of cell polarity are common features of malignant carcinomas. Hypoxia-inducible factor 1 (HIF1) is the major regulator of cellular hypoxia response and mediates the activation of ∼300 genes. Increased HIF1 signaling is known to be associated with epithelial-mesenchymal transformation. Here, we report that hypoxia disrupts polarized epithelial morphogenesis of MDCK cells in a HIF1α-dependent manner by modulating the transforming growth factor-ß (TGFß) signaling pathway. Analysis of potential HIF1 targets in the TGFß pathway identified the bone morphogenetic protein and activin membrane-bound inhibitor (BAMBI), a transmembrane glycoprotein related to the type I receptors of the TGFß family, whose expression was essentially lost in HIF1-depleted cells. Similar to what was observed in HIF1-deficient cells, BAMBI-depleted cells failed to efficiently activate TGFß signaling and retained epithelial polarity during hypoxia. Taken together, we show that hypoxic conditions promote TGFß signaling in a HIF1-dependent manner and BAMBI is identified in this pathway as a novel HIF1-regulated gene that contributes to hypoxia-induced loss of epithelial polarity.


Assuntos
Polaridade Celular , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Hipóxia/metabolismo , Proteínas de Membrana/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Animais , Cães , Humanos , Hipóxia/genética , Hipóxia/fisiopatologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Células Madin Darby de Rim Canino , Proteínas de Membrana/genética , Transdução de Sinais
19.
J Biol Chem ; 293(20): 7645-7658, 2018 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-29615493

RESUMO

Collagens are the most abundant extracellular matrix proteins in vertebrates and have a characteristic triple-helix structure. Hydroxylation of proline residues is critical for helix stability, and diminished prolyl hydroxylase activity causes wide-spread defects in connective tissues. Still, the role of proline hydroxylation in the binding of collagen receptors such as integrins is unclear. Here, we isolated skin collagen from genetically modified mice having reduced prolyl 4-hydroxylase activity. At room temperature, the reduced proline hydroxylation did not affect interactions with the recombinant integrin α2I domain, but at 37 °C, collagen hydroxylation correlated with the avidity of α2I domain binding. Of note, LC-MS/MS analysis of isolated skin collagens revealed no major changes in the hydroxyproline content of the main integrin-binding sites. Thus, the disrupted α2I domain binding at physiological temperatures was most likely due to structural destabilization of the collagenous helix. Integrin α2I binding to the triple-helical GFPGER motif was slightly weaker than to GFOGER (O = hydroxyproline). This phenomenon was more prominent when α1 integrin was tested. Integrin α1ß1 expressed on CHO cells and recombinant α1I domain showed remarkably slower binding velocity and weaker avidity to GFPGER when compared with GFOGER. Structural modeling revealed the critical interaction between Arg-218 in α1I and the hydroxyproline residue in the integrin-binding motif. The role of Arg-218 was further validated by testing a variant R218D α1I domain in solid-phase binding assays. Thus, our results show that the lack of proline hydroxylation in collagen can affect integrin binding by a direct mechanism and via structural destabilization of the triple helix.


Assuntos
Colágeno Tipo I/química , Hidroxiprolina/química , Integrina alfa1/metabolismo , Prolina/química , Prolil Hidroxilases/metabolismo , Animais , Sítios de Ligação , Adesão Celular , Colágeno Tipo I/metabolismo , Cristalografia por Raios X , Hidroxilação , Hidroxiprolina/metabolismo , Integrina alfa1/química , Camundongos , Prolina/metabolismo , Ligação Proteica
20.
Hum Mol Genet ; 26(12): 2207-2217, 2017 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-28419360

RESUMO

Collagen prolyl 4-hydroxylases (C-P4Hs) play a central role in the formation and stabilization of the triple helical domain of collagens. P4HA1 encodes the catalytic α(I) subunit of the main C-P4H isoenzyme (C-P4H-I). We now report human bi-allelic P4HA1 mutations in a family with a congenital-onset disorder of connective tissue, manifesting as early-onset joint hypermobility, joint contractures, muscle weakness and bone dysplasia as well as high myopia, with evidence of clinical improvement of motor function over time in the surviving patient. Similar to P4ha1 null mice, which die prenatally, the muscle tissue from P1 and P2 was found to have reduced collagen IV immunoreactivity at the muscle basement membrane. Patients were compound heterozygous for frameshift and splice site mutations leading to reduced, but not absent, P4HA1 protein level and C-P4H activity in dermal fibroblasts compared to age-matched control samples. Differential scanning calorimetry revealed reduced thermal stability of collagen in patient-derived dermal fibroblasts versus age-matched control samples. Mutations affecting the family of C-P4Hs, and in particular C-P4H-I, should be considered in patients presenting with congenital connective tissue/myopathy overlap disorders with joint hypermobility, contractures, mild skeletal dysplasia and high myopia.


Assuntos
Pró-Colágeno-Prolina Dioxigenase/genética , Pró-Colágeno-Prolina Dioxigenase/metabolismo , Prolil Hidroxilases/genética , Animais , Membrana Basal/metabolismo , Osso e Ossos/metabolismo , Criança , Colágeno Tipo IV/genética , Tecido Conjuntivo , Humanos , Masculino , Camundongos , Camundongos Knockout , Músculos/metabolismo , Mutação , Osteocondrodisplasias/genética , Prolil Hidroxilases/metabolismo , Tendões/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA