Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-37540608

RESUMO

Thermal ablation of localized prostate tumors via endocavitary ultrasound-guided high-intensity focused ultrasound (USgHIFU) faces challenges that could be alleviated by better integration of dual modalities (imaging/therapy). Capacitive micromachined ultrasound transducers (CMUTs) may provide an alternative to existing piezoelectric technologies by exhibiting advanced integration capability through miniaturization, broad frequency bandwidth, and potential for high electroacoustic efficiency. An endocavitary dual-mode USgHIFU probe was built to investigate the potential of using CMUT technologies for transrectal prostate cancer ablative therapy. The USgHIFU probe included a planar 64-element annular high-intensity focused ultrasound (HIFU) CMUT array ( [Formula: see text] = 3 MHz) surrounding a 256-element linear imaging CMUT array. Acoustic characterization of the HIFU array included 3-D pressure field mapping and radiation force balance measurements. Ex vivo proof-of-concept experiments consisted in generating HIFU thermal ablations with the CMUT probe on porcine liver tissues. The planar CMUT probe enabled HIFU dynamic focusing (distance range: 32-72 mm) while providing acoustic surface intensities of 1 W/cm2 that allowed producing elementary ex vivo ablations in depth of liver tissue ( L ×W ≈ 10×5 mm). Combinations of dynamic focusing, along with probe rotation and translation produced larger thermal ablations ( L ×W ≈ 20×20 mm) by juxtaposing multiple elementary ablations, consistent with expected results obtained through numerical modeling. The technical feasibility of using a USgHIFU probe, fully developed using CMUTs for tissue ablation purposes, was demonstrated. The HIFU-CMUT array showed tissue ablation capabilities with volumes compatible with localized cancer targeting, thus providing assets for further development of focal therapies.


Assuntos
Tratamento por Ondas de Choque Extracorpóreas , Ablação por Ultrassom Focalizado de Alta Intensidade , Masculino , Suínos , Animais , Transdutores , Ultrassonografia , Fígado/diagnóstico por imagem , Fígado/cirurgia , Ablação por Ultrassom Focalizado de Alta Intensidade/métodos , Desenho de Equipamento
2.
Med Phys ; 49(1): 682-701, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34796512

RESUMO

PURPOSE: Focused ultrasound (FUS) is a promising tool to develop new modalities of therapeutic neurostimulation. The ability of FUS to stimulate the nervous system, in a noninvasive and spatiotemporally precise manner, has been demonstrated in animals and human subjects, but the underlying biomechanisms are not fully understood yet. The objective of the present study was to investigate the bioeffects involved in the generation of trains of action potentials (APs) by repetitive-pulse FUS stimuli in a simple invertebrate neural model. METHODS: The respective influences of different acoustic parameters on the neurostimulation success rate (NSR), defined as the rate of FUS stimuli capable of evoking at least one AP, were explored using the system of afferent nerves and giant fibers of Lumbricus terrestris as neural model. Each parameter was studied independently by administering random FUS sequences while keeping all but one FUS parameter constant. The NSR was evaluated as a function of (i) the spatial-average pulse-average intensity (Isapa ); (ii) the pulse duration (PD); (iii) the pulse repetition frequency (PRF); iv) the number of cycles per pulse (Ncycles ); (v) two ultrasound frequencies, f0  = 1.1 MHz and f3  = 3.3 MHz, corresponding to the fundamental and third-harmonic resonant frequencies of the FUS transducer, respectively (spherical, radius of curvature: 50 mm); and (vi) levels of emerging stable cavitation and inertial cavitation. RESULTS: The NSR associated to 1.1 MHz repetitive-pulse FUS stimuli was found to increase as a function of increasing Isapa , PD, PRF, and Ncycles . When evaluating each parameter at f = 1.1 MHz, it was observed that NSRs close to 100% were achieved when sufficiently elevating their respective values. When computing the NSR as a function of the spatial-average, temporal-average intensity (Isata ), defined as the product of PRF, PD, and Isapa , a significant elevation of the NSR from 0% to close to 100% was measured by increasing Isata from values approximate to 4 W/cm2 to values higher than 12 W/cm2 . No clear and consistent trend was observed in trials aimed at exploring the effects of different levels of stable and inertial acoustic cavitation on the NSR. Finally, the feasibility of inducing neural responses with 3.3 MHz repetitive-pulse FUS stimuli was also demonstrated with NSRs reaching up to 60%, in the range of FUS parameters studied. CONCLUSION: The time-averaged value of the radiation force per unit volume of tissue is proportional to the acoustic intensity. As a result, the observations from this study suggest that the neural structure responding to the stimulus is sensitive to the mean radiation force carried by the FUS sequence, regardless of the combination of FUS parameters giving rise to such force. The results from this study further revealed the existence of a minimal activation threshold with regard to Isapa .


Assuntos
Acústica , Axônios , Animais , Humanos , Som , Transdutores , Ultrassonografia
3.
Int J Hyperthermia ; 26(8): 804-21, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-21043572

RESUMO

Minimally invasive treatments for localised prostate cancer are being developed with the aim of achieving effective disease control with low morbidity. High-temperature thermal therapy aimed at producing irreversible thermal coagulation of the prostate gland is attractive because of the rapid onset of thermal injury, and the immediate visualisation of tissue response using medical imaging. High-intensity ultrasound therapy has been shown to be an effective means of achieving thermal coagulation of prostate tissue using minimally invasive devices inserted into the rectum, urethra, or directly into the gland itself. The focus of this review is to describe the work done in our group on the development of MRI-controlled transurethral ultrasound therapy. This technology utilises high intensity ultrasound energy delivered from a transurethral device to achieve thermal coagulation of prostate tissue. Control over the spatial pattern of thermal damage is achieved through closed-loop temperature feedback using quantitative MR thermometry during treatment. The technology, temperature feedback algorithms, and results from numerical modelling, along with experimental results obtained in animal and human studies are described. Our experience suggests that this form of treatment is technically feasible, and compatible with existing MR imaging systems. Temperature feedback control algorithms using MR thermometry can achieve spatial treatment accuracy of a few millimetres in vivo. Patient-specific simulations predict that surrounding tissues can be spared from thermal damage if appropriate measures are taken into account during treatment planning. Recent human experience has been encouraging and motivates further evaluation of this technology as a potential treatment for localised prostate cancer.


Assuntos
Imageamento por Ressonância Magnética/métodos , Neoplasias da Próstata/terapia , Terapia por Ultrassom/métodos , Algoritmos , Animais , Desenho de Equipamento , Humanos , Hipertermia Induzida/instrumentação , Hipertermia Induzida/métodos , Imageamento por Ressonância Magnética/instrumentação , Masculino , Próstata/anatomia & histologia , Próstata/patologia , Transdutores , Terapia por Ultrassom/instrumentação
4.
Ultrasound Med Biol ; 46(12): 3286-3295, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32891425

RESUMO

This study demonstrated that high-intensity focused ultrasound (HIFU) produced with an intra-operative toroidal-shaped transducer causes fast, selective liver tumor ablations in an animal model. The HIFU device is composed of 256 emitters working at 3 MHz. A 7.5 MHz ultrasound imaging probe centered on the HIFU transducer guided treatment. VX2 tumor segments (25 mg) were implanted into the right lateral liver lobes of 45 New Zealand rabbits. The animals were evenly divided into groups 1 (toroidal HIFU ablation), 2 (surgical resection) and 3 (untreated control). Therapeutic responses were evaluated with gross pathology and histology 11 d post-treatment. Toroidal transducer-produced HIFU ablation (average ablation rate 10.5 cc/min) allowed fast and homogeneous tumor treatment. Sonograms showed all ablations. VX2 tumors were completely coagulated and surrounded by safety margins without surrounding-organ secondary HIFU lesions. HIFU group tumor volumes at autopsy (39 mm3) were significantly lower than control group volumes (2610 mm3, p < 0.0001). HIFU group tumor metastasis (27%) was lower than resected (33%) and control (67%) group metastasis. Ultrasound imaging, gross pathology and histology results supported these outcomes. HIFU procedures had no complications. Rabbit liver tumor ablation using a toroidal HIFU transducer under ultrasound imaging guidance might therefore be an effective intra-operative treatment for localized liver metastases.


Assuntos
Ablação por Ultrassom Focalizado de Alta Intensidade/instrumentação , Neoplasias Hepáticas/cirurgia , Ultrassonografia de Intervenção/instrumentação , Animais , Modelos Animais de Doenças , Ablação por Ultrassom Focalizado de Alta Intensidade/métodos , Coelhos , Fatores de Tempo
5.
Sci Rep ; 9(1): 13738, 2019 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-31551448

RESUMO

Focused ultrasound are considered to be a promising tool for the treatment of neurological conditions, overcoming the limitations of current neurostimulation techniques in terms of spatial resolution and invasiveness. Much evidence to support the feasibility of ultrasound activation of neurons at the systemic level has already been provided, but to this day, the biophysical mechanisms underlying ultrasound neurostimulation are still widely unknown. In order to be able to establish a clear and robust causality between acoustic parameters of the excitation and neurobiological characteristics of the response, it is necessary to work at the cellular level, or alternatively on very simple animal models. The study reported here responds to three objectives. Firstly, to propose a simple nervous model for the study of the ultrasound neurostimulation phenomenon, associated with a clear and simple experimental protocol. Secondly, to compare the characteristics of this model's nervous response to ultrasound neurostimulation with its nervous response to mechanical and electrical stimulation. Thirdly, to study the role played by certain acoustic parameters in the success rate of the phenomenon of ultrasound stimulation. The feasibility of generating action potentials (APs) in the giant axons of an earthworm's ventral nerve cord, using pulsed ultrasound stimuli (f = 1.1 MHz, Ncycles = 175-1150, PRF = 25-125 Hz, Npulses = 20, PA = 2.5-7.3 MPa), was demonstrated. The time of generation (TOG) of APs associated with ultrasound stimulation was found to be significantly shorter and more stable than the TOG associated with mechanical stimulation (p < 0.001). By applying a causal approach to interpret the results of this study, it was concluded that, in this model, the nervous response to focused ultrasound is initiated along the afferent neurons, in between the mechanosensors and the synaptic connections with the giant axons. Additionally, early results are provided, highlighting a trend for the success rate of ultrasound neurostimulation and number of APs triggered per response to increase with increasing pulse repetition frequency (p < 0.05 and p < 0.001, respectively), increasing pulse duration and increasing pulse amplitude.


Assuntos
Invertebrados/fisiologia , Neurônios Aferentes/fisiologia , Acústica , Animais , Axônios/fisiologia , Estimulação Elétrica/métodos , Modelos Animais , Oligoquetos/fisiologia , Ondas Ultrassônicas , Ultrassonografia/métodos
6.
Artigo em Inglês | MEDLINE | ID: mdl-28541897

RESUMO

Capacitive micromachined ultrasound transducers (CMUTs) exhibit several potential advantages over conventional piezo technologies for use in therapeutic ultrasound (US) devices, including ease of miniaturization and integration with electronics, broad bandwidth (>several megahertz), and compatibility with magnetic resonance imaging (MRI). In this paper, the electroacoustic performance of CMUTs designed for interstitial high-intensity contact US (HICU) applications was evaluated and the feasibility of generating US-induced heating and thermal destruction of biological tissues was studied. One-dimensional CMUT linear arrays as well as a prism-shaped 2-D array composed of multiple 1-D linear arrays mounted on a cylindrical catheter were fabricated. The electromechanical and acoustic characteristics of the CMUTs were first studied at low intensity. Then, the acoustic output during continuous wave (CW) driving was studied while varying the bias voltage ( VDC ) and driving voltage ( VAC ). US heating was performed in tissue-mimicking gel phantoms under infrared (IR) or MR-thermometry monitoring. Acoustic intensities compatible with thermal ablation were obtained by driving the CMUTs in the collapse-snapback operation mode ( [Formula: see text]). Hysteresis in the acoustic output was observed with varying VDC . IR- and MR-thermometry monitoring showed directional US-induced heating patterns in tissue-mimicking phantoms (frequency: 6-8 MHz and exposure time: 60-240 s) extending over 1.5-cm depth from the CMUT surface. Irreversible thermal damage was produced in turkey breast tissue samples ( [Formula: see text]). Multidirectional US-induced heating was also achieved in 3-D with the CMUT catheter. These studies demonstrate that CMUTs can be integrated into HICU devices and be used for heating and destruction of tissue under MR guidance.


Assuntos
Tratamento por Ondas de Choque Extracorpóreas/instrumentação , Transdutores , Animais , Desenho de Equipamento , Microtecnologia/instrumentação , Músculo Esquelético/diagnóstico por imagem , Imagens de Fantasmas , Perus
7.
Ultrasound Med Biol ; 42(8): 1848-61, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27158083

RESUMO

Catheter ablation for the treatment of arrhythmia is associated with significant complications and often-repeated procedures. Consequently, a less invasive and more efficient technique is required. Because high-intensity focused ultrasound (HIFU) enables the generation of precise thermal ablations in deep-seated tissues without harming the tissues in the propagation path, it has the potential to be used as a new ablation technique. A system capable of delivering HIFU into the heart by a transesophageal route using ultrasound (US) imaging guidance was developed and tested in vivo in six male pigs. HIFU exposures were performed on atria and ventricles. At the time of autopsy, visual inspection identified thermal lesions in the targeted areas in three of the animals. These lesions were confirmed by histologic analysis (mean size: 5.5 mm(2) × 11 mm(2)). No esophageal thermal injury was observed. One animal presented with bradycardia due to an atrio-ventricular block, which provides real-time confirmation of an interaction between HIFU and the electrical circuits of the heart. Thus, US-guided HIFU has the potential to minimally invasively create myocardial lesions without an intra-cardiac device.


Assuntos
Átrios do Coração/diagnóstico por imagem , Ventrículos do Coração/cirurgia , Ablação por Ultrassom Focalizado de Alta Intensidade/métodos , Ultrassonografia de Intervenção/métodos , Animais , Esôfago , Estudos de Viabilidade , Átrios do Coração/cirurgia , Ventrículos do Coração/diagnóstico por imagem , Masculino , Modelos Animais , Projetos Piloto , Suínos
8.
PLoS One ; 10(9): e0137317, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26398366

RESUMO

Organ motion is a key component in the treatment of abdominal tumors by High Intensity Focused Ultrasound (HIFU), since it may influence the safety, efficacy and treatment time. Here we report the development in a porcine model of an Ultrasound (US) image-based dynamic fusion modeling method for predicting the effect of in vivo motion on intraoperative HIFU treatments performed in the liver in conjunction with surgery. A speckle tracking method was used on US images to quantify in vivo liver motions occurring intraoperatively during breathing and apnea. A fusion modeling of HIFU treatments was implemented by merging dynamic in vivo motion data in a numerical modeling of HIFU treatments. Two HIFU strategies were studied: a spherical focusing delivering 49 juxtapositions of 5-second HIFU exposures and a toroidal focusing using 1 single 40-second HIFU exposure. Liver motions during breathing were spatially homogenous and could be approximated to a rigid motion mainly encountered in the cranial-caudal direction (f = 0.20 Hz, magnitude > 13 mm). Elastic liver motions due to cardiovascular activity, although negligible, were detectable near millimeter-wide sus-hepatic veins (f = 0.96 Hz, magnitude < 1 mm). The fusion modeling quantified the deleterious effects of respiratory motions on the size and homogeneity of a standard "cigar-shaped" millimetric lesion usually predicted after a 5-second single spherical HIFU exposure in stationary tissues (Dice Similarity Coefficient: DSC < 45%). This method assessed the ability to enlarge HIFU ablations during respiration, either by juxtaposing "cigar-shaped" lesions with spherical HIFU exposures, or by generating one large single lesion with toroidal HIFU exposures (DSC > 75%). Fusion modeling predictions were preliminarily validated in vivo and showed the potential of using a long-duration toroidal HIFU exposure to accelerate the ablation process during breathing (from 0.5 to 6 cm3 · min(-1)). To improve HIFU treatment control, dynamic fusion modeling may be interesting for assessing numerically focusing strategies and motion compensation techniques in more realistic conditions.


Assuntos
Ablação por Ultrassom Focalizado de Alta Intensidade , Fígado/cirurgia , Animais , Interpretação de Imagem Assistida por Computador , Período Intraoperatório , Fígado/fisiologia , Movimento , Cirurgia Assistida por Computador , Sus scrofa , Resultado do Tratamento
9.
Phys Med Biol ; 60(20): 7829-46, 2015 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-26406354

RESUMO

Heart rhythm disorders, such as atrial fibrillation or ventricular tachycardia can be treated by catheter-based thermal ablation. However, clinically available systems based on radio-frequency or cryothermal ablation suffer from limited energy penetration and the lack of lesion's extent monitoring. An ultrasound-guided transesophageal device has recently successfully been used to perform High-Intensity Focused Ultrasound (HIFU) ablation in targeted regions of the heart in vivo. In this study we investigate the feasibility of a dual therapy and imaging approach on the same transesophageal device. We demonstrate in vivo that quantitative cardiac shear-wave elastography (SWE) can be performed with the device and we show on ex vivo samples that transesophageal SWE can map the extent of the HIFU lesions. First, SWE was validated with the transesophageal endoscope in one sheep in vivo. The stiffness of normal atrial and ventricular tissues has been assessed during the cardiac cycle (n = 11) and mapped (n = 7). Second, HIFU ablation has been performed with the therapy-imaging transesophageal device in ex vivo chicken breast samples (n = 3), then atrial (left, n = 2) and ventricular (left n = 1, right n = 1) porcine heart tissues. SWE provided stiffness maps of the tissues before and after ablation. Areas of the lesions were obtained by tissue color change with gross pathology and compared to SWE. During the cardiac cycle stiffness varied from 0.5 ± 0.1 kPa to 6.0 ± 0.3 kPa in the atrium and from 1.3 ± 0.3 kPa to 13.5 ± 9.1 kPa in the ventricles. The thermal lesions were visible on all SWE maps performed after ablation. Shear modulus of the ablated zones increased to 16.3 ± 5.5 kPa (versus 4.4 ± 1.6 kPa before ablation) in the chicken breast, to 30.3 ± 10.3 kPa (versus 12.2 ± 4.3 kPa) in the atria and to 73.8 ± 13.9 kPa (versus 21.2 ± 3.3 kPa) in the ventricles. On gross pathology, the size of the lesions ranged from 0.1 to 1.5 cm(2) in the imaging plane area. Elasticity-estimated depths and widths of the lesions differed respectively with a median of 0.2 mm (first quartile Q1: -0.8 mm; third quartile Q3: 2.6 mm) for a mean squared error (MSE) of 5.1 mm(2) and a median of 0.2 mm (Q1: -2.7 mm; Q3: 2.7 mm) for a MSE of 11.1 mm(2) from gross pathology. We have demonstrated the feasibility of the HIFU thermal ablation monitoring using a dual therapy and imaging transesophageal device. The combination of HIFU, ultrasound imaging and SWE on the same transesophageal system could lead to a new clinical device for a safer and controlled treatment of a wide variety of cardiac arrhythmias.


Assuntos
Ablação por Cateter/métodos , Ecocardiografia Transesofagiana/métodos , Técnicas de Imagem por Elasticidade/métodos , Cardiopatias/patologia , Cardiopatias/cirurgia , Ablação por Ultrassom Focalizado de Alta Intensidade/métodos , Ultrassom/instrumentação , Animais , Ovinos , Transdutores
10.
Artigo em Inglês | MEDLINE | ID: mdl-24658718

RESUMO

Atrial fibrillation (AF) is the most frequent cardiac arrhythmia. Left atrial catheter ablation is currently performed to treat this disease. Several energy sources are used, such as radio-frequency or cryotherapy. The main target of this procedure is to isolate the pulmonary veins. However, significant complications caused by the invasive procedure are described, such as stroke, tamponade, and atrioesophageal fistula, and a second intervention is often needed to avoid atrial fibrillation recurrence. For these reasons, a minimally-invasive device allowing performance of more complex treatments is still needed. High-intensity focused ultrasound (HIFU) can cause deep tissue lesions without damaging intervening tissues. Left atrial ultrasound-guided transesophageal HIFU ablation could have the potential to become a new ablation technique. The goal of this study was to design and test a minimally-invasive ultrasound-guided transesophageal HIFU probe under realistic treatment conditions. First, numerical simulations were conducted to determine the probe geometry, and to validate the feasibility of performing an AF treatment using a HIFU mini-maze (HIFUMM) procedure. Then, a prototype was manufactured and characterized. The 18-mm-diameter probe head housing contained a 3-MHz spherical truncated HIFU transducer divided into 8 rings, with a 5-MHz commercial transesophageal echocardiography (TEE) transducer integrated in the center. Finally, ex vivo experiments were performed to test the impact of the esophagus layer between the probe and the tissue to treat, and also the influence of the lungs and the vascularization on lesion formation. First results show that this prototype successfully created ex vivo transmural myocardial lesions under ultrasound guidance, while preserving intervening tissues (such as the esophagus). Ultrasound-guided transesophageal HIFU can be a good candidate for treatment of AF in the future.


Assuntos
Procedimentos Cirúrgicos Cardíacos/instrumentação , Ecocardiografia/instrumentação , Ablação por Ultrassom Focalizado de Alta Intensidade/instrumentação , Cirurgia Assistida por Computador/instrumentação , Transdutores , Animais , Desenho Assistido por Computador , Desenho de Equipamento , Análise de Falha de Equipamento , Ablação por Ultrassom Focalizado de Alta Intensidade/métodos , Miniaturização , Projetos Piloto , Ovinos , Cirurgia Assistida por Computador/métodos , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA