Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Int J Mol Sci ; 25(4)2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38396706

RESUMO

NAC transcription factors (TFs) are one of the largest TF families in plants, and TaNACs have been known to participate in the regulation of the transcription of many yield-regulating genes in bread wheat. The TaCKX gene family members (GFMs) have already been shown to regulate yield-related traits, including grain mass and number, leaf senescence, and root growth. The genes encode cytokinin (CK) degrading enzymes (CKXs) and are specifically expressed in different parts of developing wheat plants. The aim of the study was to identify and characterize TaNACs involved in the cis-regulation of TaCKX GFMs. After analysis of the initial transcription factor data in 1.5 Kb cis-regulatory sequences of a total of 35 homologues of TaCKX GFMs, we selected five of them, namely TaCKX1-3A, TaCKX22.1-3B, TaCKX5-3D, TaCKX9-1B, and TaCKX10, and identified five TaNAC genes: TaNACJ-1, TaNAC13a, TaNAC94, TaNACBr-1, and TaNAC6D, which are potentially involved in the cis-regulation of selected TaCKX genes, respectively. Protein feature analysis revealed that all of the selected TaNACs have a conserved NAC domain and showed a stable tertiary structure model. The expression profile of the selected TaNACs was studied in 5 day-old seedling roots, 5-6 cm inflorescences, 0, 4, 7, and 14 days-after-pollination (DAP) spikes, and the accompanying flag leaves. The expression pattern showed that all of the selected TaNACs were preferentially expressed in seedling roots, 7 and 14 DAP spikes, and flag leaves compared to 5-6 cm inflorescence and 0 and 4 DAP spikes and flag leaves in Kontesa and Ostka spring wheat cultivars (cvs.). In conclusion, the results of this study highlight the potential role of the selected TaNACs in the regulation of grain productivity, leaf senescence, root growth, and response to various stresses.


Assuntos
Propiofenonas , Fatores de Transcrição , Triticum , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Triticum/metabolismo , Família Multigênica , Fenótipo , Regulação da Expressão Gênica de Plantas , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
2.
Int J Mol Sci ; 25(6)2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38542529

RESUMO

Members of the TaCKX gene family (GFM) encode oxidase/dehydrogenase cytokinin degrading enzymes (CKX), which play an important role in the homeostasis of phytohormones, affecting wheat development and productivity. Therefore, the objective of this investigation was to test how the expression patterns of the yield-related TaCKX genes and TaNAC2-5A (NAC2) measured in 7 days after pollination (DAP) spikes and the seedling roots of parents are inherited to apply this knowledge in the breeding process. The expression patterns of these genes were compared between parents and their F2 progeny in crosses of one mother with different paterns of awnless cultivars and reciprocal crosses of awned and awnless lines. We showed that most of the genes tested in the 7 DAP spikes and seedling roots of the F2 progeny showed paternal expression patterns in crosses of awnless cultivars as well as reciprocal crosses of awned and awnless lines. Consequently, the values of grain yield in the F2 progeny were similar to the pater; however, the values of seedling root mass were similar to the mother or both parents. The correlation analysis of TaCKX GFMs and NAC2 in spikes and spikes per seedling roots reveals that the genes correlate with each other specifically with the pater and the F2 progeny or the mother and the F2 progeny, which shape phenotypic traits. The numbers of spikes and semi-empty spikes are mainly correlated with the specific coexpression of the TaCKX and NAC2 genes expressed in spikes or spikes per roots of the pater and F2 progeny. Variable regression analysis of grain yield and root mass with TaCKX GFMs and NAC2 expressed in the tested tissues of five crosses revealed a significant dependency of these parameters on the mother and F2 and/or the pater and F2 progeny. We showed that the inheritance of yield-related traits depends on the specific cooperative expression of some TaCKX GFMs, in some crosses coupled with NAC2, and is strongly dependent on the genotypes used for the crosses. Indications for parental selection in the breeding of high-yielding lines are discussed.


Assuntos
Melhoramento Vegetal , Triticum , Triticum/genética , Triticum/metabolismo , Oxirredutases/metabolismo , Fenótipo , Genótipo , Plântula
3.
Int J Mol Sci ; 25(2)2024 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-38256072

RESUMO

Brassinosteroids (BRs) are a class of plant steroid hormones that are essential for plant growth and development. BRs control important agronomic traits and responses to abiotic stresses. Through the signaling pathway, BRs control the expression of thousands of genes, resulting in a variety of biological responses. The key effectors of the BR pathway are two transcription factors (TFs): BRASSINAZOLE RESISTANT 1 (BZR1) and BRI1-EMSSUPPRESSOR 1 (BES1). Both TFs are phosphorylated and inactivated by the Glycogen synthase kinase 3 BRASSINOSTEROID INSENSITIVE2 (BIN2), which acts as a negative regulator of the BR pathway. In our study, we describe the functional characteristics of HvGSK1.1, which is one of the GSK3/SHAGGY-like orthologs in barley. We generated mutant lines of HvGSK1.1 using CRISPR/Cas9 genome editing technology. Next Generation Sequencing (NGS) of the edited region of the HvGSK1.1 showed a wide variety of mutations. Most of the changes (frameshift, premature stop codon, and translation termination) resulted in the knock-out of the target gene. The molecular and phenotypic characteristics of the mutant lines showed that the knock-out mutation of HvGSK1.1 improved plant growth performance under salt stress conditions and increased the thousand kernel weight of the plants grown under normal conditions. The inactivation of HvGSK1.1 enhanced BR-dependent signaling, as indicated by the results of the leaf inclination assay in the edited lines. The plant traits under investigation are consistent with those known to be regulated by BRs. These results, together with studies of other GSK3 gene members in other plant species, suggest that targeted editing of these genes may be useful in creating plants with improved agricultural traits.


Assuntos
Brassinosteroides , Hordeum , Brassinosteroides/farmacologia , Hordeum/genética , Quinase 3 da Glicogênio Sintase/genética , Tolerância ao Sal/genética , Transdução de Sinais , Reguladores de Crescimento de Plantas
4.
Int J Mol Sci ; 24(9)2023 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-37175902

RESUMO

Members of the TaCKX gene family (GFMs) encode the cytokinin oxygenase/dehydrogenase enzyme (CKX), which irreversibly degrades cytokinins in the organs of wheat plants; therefore, these genes perform a key role in the regulation of yield-related traits. The purpose of the investigation was to determine how expression patterns of these genes, together with the transcription factor-encoding gene TaNAC2-5A, and yield-related traits are inherited to apply this knowledge to speed up breeding processes. The traits were tested in 7 days after pollination (DAP) spikes and seedling roots of maternal and paternal parents and their F2 progeny. The expression levels of most of them and the yield were inherited in F2 from the paternal parent. Some pairs or groups of genes cooperated, and some showed opposite functions. Models of up- or down-regulation of TaCKX GFMs and TaNAC2-5A in low-yielding maternal plants crossed with higher-yielding paternal plants and their high-yielding F2 progeny reproduced gene expression and yield of the paternal parent. The correlation coefficients between TaCKX GFMs, TaNAC2-5A, and yield-related traits in high-yielding F2 progeny indicated which of these genes were specifically correlated with individual yield-related traits. The most common was expressed in 7 DAP spikes TaCKX2.1, which positively correlated with grain number, grain yield, spike number, and spike length, and seedling root mass. The expression levels of TaCKX1 or TaNAC2-5A in the seedling roots were negatively correlated with these traits. In contrast, the thousand grain weight (TGW) was negatively regulated by TaCKX2.2.2, TaCKX2.1, and TaCKX10 in 7 DAP spikes but positively correlated with TaCKX10 and TaNAC2-5A in seedling roots. Transmission of TaCKX GFMs and TaNAC2-5A expression patterns and yield-related traits from parents to the F2 generation indicate their paternal imprinting. These newly shown data of nonmendelian epigenetic inheritance shed new light on crossing strategies to obtain a high-yielding F2 generation.


Assuntos
Herança Paterna , Triticum , Triticum/genética , Melhoramento Vegetal , Fenótipo , Plântula/genética
5.
Int J Mol Sci ; 23(23)2022 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-36499751

RESUMO

Crop traits are controlled by multiple genes; however, the complex spatio-temporal transcriptional behavior of genes cannot be fully understood without comprehending the role of transcription factors (TFs) and the underlying mechanisms of the binding interactions of their cis-regulatory elements. NAC belongs to one of the largest families of plant-specific TFs and has been associated with the regulation of many traits. This review provides insight into the cis-regulation of genes by wheat NACs (TaNACs) for the improvement in yield-related traits, including phytohormonal homeostasis, leaf senescence, seed traits improvement, root modulation, and biotic and abiotic stresses in wheat and other cereals. We also discussed the current potential, knowledge gaps, and prospects of TaNACs.


Assuntos
Regulação da Expressão Gênica de Plantas , Triticum , Triticum/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estresse Fisiológico/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
6.
Int J Mol Sci ; 23(21)2022 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-36362207

RESUMO

Global climate change and the urgency to transform crops require an exhaustive genetic evaluation. The large polyploid genomes of food crops, such as cereals, make it difficult to identify candidate genes with confirmed hereditary. Although genome-wide association studies (GWAS) have been proficient in identifying genetic variants that are associated with complex traits, the resolution of acquired heritability faces several significant bottlenecks such as incomplete detection of structural variants (SV), genetic heterogeneity, and/or locus heterogeneity. Consequently, a biased estimate is generated with respect to agronomically complex traits. The graph pangenomes have resolved this missing heritability and provide significant details in terms of specific loci segregating among individuals and evolving to variations. The graph pangenome approach facilitates crop improvements through genome-linked fast breeding.


Assuntos
Estudo de Associação Genômica Ampla , Locos de Características Quantitativas , Humanos , Polimorfismo de Nucleotídeo Único , Melhoramento Vegetal , Herança Multifatorial , Produtos Agrícolas/genética
7.
Int J Mol Sci ; 22(10)2021 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-34064912

RESUMO

Long noncoding RNAs (lncRNAs) are a class of RNA molecules with gene regulatory functions in plant development and the stress response. Although the number of lncRNAs identified in plants is rapidly increasing, very little is known about their role in barley development. In this study, we performed global identification of barley lncRNAs based on 53 RNAseq libraries derived from nine different barley tissues and organs. In total, 17,250 lncRNAs derived from 10,883 loci were identified, including 8954 novel lncRNAs. Differential expression of lncRNAs was observed in the developing shoot apices and grains, the two organs that have a direct influence on the final yield. The regulatory interaction of differentially expressed lncRNAs with the potential target genes was evaluated. We identified 176 cis-acting lncRNAs in shoot apices and 424 in grains, while the number of trans-acting lncRNAs in these organs was 1736 and 540, respectively. The potential target protein-coding genes were identified, and their biological function was annotated using MapMan ontology. This is the first insight into the roles of lncRNAs in barley development on the genome-wide scale, and our results provide a solid background for future functional studies.


Assuntos
Grão Comestível/crescimento & desenvolvimento , Genoma de Planta , Hordeum/crescimento & desenvolvimento , Proteínas de Plantas/genética , Brotos de Planta/crescimento & desenvolvimento , RNA Longo não Codificante/genética , RNA de Plantas/genética , Grão Comestível/genética , Grão Comestível/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Redes Reguladoras de Genes , Hordeum/genética , Hordeum/metabolismo , Proteínas de Plantas/metabolismo , Brotos de Planta/genética , Brotos de Planta/metabolismo
8.
Int J Mol Sci ; 22(21)2021 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-34768924

RESUMO

The influence of silenced TaCKX1 and TaCKX2 on coexpression of other TaCKX gene family members (GFMs), phytohormone regulation and yield-related traits was tested in awned-spike cultivar. We documented a strong feedback mechanism of regulation of TaCKX GFM expression in which silencing of TaCKX1 upregulated expression of TaCKX2 genes and vice versa. Additionally, downregulation of TaCKX2 highly upregulated the expression of TaCKX5 and TaNAC2-5A. In contrast, expression of these genes in silenced TaCKX1 was downregulated. Silenced TaCKX1 T2 lines with expression decreased by 47% had significantly higher thousand grain weight (TGW) and seedling root mass. Silenced TaCKX2 T2 lines with expression of TaCKX2.2.1 and TaCKX2.2.2 decreased by 33% and 30%, respectively, had significantly higher chlorophyll content in flag leaves. TaCKX GFM expression, phytohormone metabolism and phenotype were additionally modified by Agrobacterium-mediated transformation. Two novel phytohormones, phenylacetic acid (PAA) and topolins, lack of gibberellic acid (GA) and changed phytohormone contents in the 7 days after pollination (DAP) spikes of the awned-spike cultivar compared to a previously tested, awnless one, were detected. We documented that major mechanisms of coregulation of the expression of TaCKX GFMs were similar in different spring wheat cultivars, but, depending on content and composition of phytohormones, regulation of yield-related traits was variously impacted.


Assuntos
Citocininas/farmacologia , Oxirredutases/genética , Reguladores de Crescimento de Plantas/genética , Triticum/crescimento & desenvolvimento , Triticum/genética , Clorofila/análise , Regulação para Baixo/genética , Grão Comestível/genética , Regulação da Expressão Gênica de Plantas/genética , Giberelinas/metabolismo , Fenilacetatos/farmacologia , Folhas de Planta/química , Raízes de Plantas/crescimento & desenvolvimento
9.
Int J Mol Sci ; 22(8)2021 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-33923687

RESUMO

TaCKX gene family members (GFMs) play essential roles in the regulation of cytokinin during wheat development and significantly influence yield-related traits. However, detailed function of most of them is not known. To characterize the role of TaCKX2.2 genes we silenced all homoeologous copies of both TaCKX2.2.1 and TaCKX2.2.2 by RNAi technology and observed the effect of silencing in 7 DAP spikes of T1 and T2 generations. The levels of gene silencing of these developmentally regulated genes were different in both generations, which variously determined particular phenotypes. High silencing of TaCKX2.2.2 in T2 was accompanied by slight down-regulation of TaCKX2.2.1 and strong up-regulation of TaCKX5 and TaCKX11, and expression of TaCKX1, TaCKX2.1, and TaCKX9 was comparable to the non-silenced control. Co-ordinated expression of TaCKX2.2.2 with other TaCKX GFMs influenced phytohormonal homeostasis. Contents of isoprenoid, active cytokinins, their conjugates, and auxin in seven DAP spikes of silenced T2 plants increased from 1.27 to 2.51 times. However, benzyladenine (BA) and abscisic acid (ABA) contents were significantly reduced and GA3 was not detected. We documented a significant role of TaCKX2.2.2 in the regulation of thousand grain weight (TGW), grain number, and chlorophyll content, and demonstrated the formation of a homeostatic feedback loop between the transcription of tested genes and phytohormones. We also discuss the mechanism of regulation of yield-related traits.


Assuntos
Grão Comestível/genética , Genes de Plantas , Reguladores de Crescimento de Plantas/metabolismo , Triticum/genética , Ácido Abscísico/metabolismo , Clorofila/metabolismo , Citocininas/metabolismo , Grão Comestível/crescimento & desenvolvimento , Grão Comestível/metabolismo , Regulação da Expressão Gênica de Plantas , Homeostase , Ácidos Indolacéticos/metabolismo , Triticum/crescimento & desenvolvimento , Triticum/metabolismo
10.
BMC Plant Biol ; 20(1): 496, 2020 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-33121443

RESUMO

BACKGROUND: TaCKX wheat gene family members (GFMs) encode the enzyme cytokinin oxidase/dehydrogenase (CKX), which irreversibly degrades cytokinins. The genes are important regulators of cytokinin content and take part in growth and development, with a major impact on yield-related traits. The goal of this research was to test whether these genes might be differentially expressed in the field compared to laboratory conditions and consequently differently affect plant development and yield. RESULTS: We compared expression and crosstalk of the TaCKX GFMs and TaNAC2-5A gene in modern varieties grown in a growth chamber (GC) and in the field and looked for differences in their impact on yield-related traits. The TaNAC2-5A gene was included in the research since it was expected to play an important role in co-regulation of these genes. The range of relative expression levels of TaCKX GFMs and TaNAC2-5A gene among tested cultivars was from 5 for TaCKX8 to more than 100 for TaCKX9 in the GC and from 6 for TaCKX8 to 275 for TaCKX10 in the field. The range was similar for four of them in the GC, but was much higher for seven others and TaNAC2-5A in the field. The TaCKX GFMs and TaNAC2-5A form co-expression groups, which differ depending on growth conditions. Consequently, the genes also differently regulate yield-related traits in the GC and in the field. TaNAC2-5A took part in negative regulation of tiller number and CKX activity in seedling roots only in controlled GC conditions. Grain number and grain yield were negatively regulated by TaCKX10 in the GC but positively by TaCKX8 and others in the field. Some of the genes, which were expressed in seedling roots, negatively influenced tiller number and positively regulated seedling root weight, CKX activity in the spikes, thousand grain weight (TGW) as well as formation of semi-empty spikes. CONCLUSIONS: We have documented that: 1) natural variation in expression levels of tested genes in both environments is very high, indicating the possibility of selection of beneficial genotypes for breeding purposes, 2) to create a model of an ideotype for breeding, we need to take into consideration the natural environment.


Assuntos
Genes de Plantas/genética , Oxirredutases/genética , Proteínas de Plantas/genética , Triticum/genética , Produção Agrícola , Meio Ambiente , Regulação da Expressão Gênica de Plantas , Genes de Plantas/fisiologia , Oxirredutases/fisiologia , Proteínas de Plantas/fisiologia , Característica Quantitativa Herdável , Triticum/enzimologia , Triticum/crescimento & desenvolvimento
11.
Int J Mol Sci ; 21(18)2020 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-32927724

RESUMO

Glycogen synthase kinase 3 (GSK3) is a highly conserved kinase present in all eukaryotes and functions as a key regulator of a wide range of physiological and developmental processes. The kinase, known in land plants as GSK3/SHAGGY-like kinase (GSK), is a key player in the brassinosteroid (BR) signaling pathway. The GSK genes, through the BRs, affect diverse developmental processes and modulate responses to environmental factors. In this work, we describe functional analysis of HvGSK1.1, which is one of the GSK3/SHAGGY-like orthologs in barley. The RNAi-mediated silencing of the target HvGSK1.1 gene was associated with modified expression of its paralogs HvGSK1.2, HvGSK2.1, HvGSK3.1, and HvGSK4.1 in plants grown in normal and in salt stress conditions. Low nucleotide similarity between the silencing fragment and barley GSK genes and the presence of BR-dependent transcription factors' binding sites in promoter regions of barley and rice GSK genes imply an innate mechanism responsible for co-regulation of the genes. The results of the leaf inclination assay indicated that silencing of HvGSK1.1 and the changes of GSK paralogs enhanced the BR-dependent signaling in the plants. The strongest phenotype of transgenic lines with downregulated HvGSK1.1 and GSK paralogs had greater biomass of the seedlings grown in normal conditions and salt stress as well as elevated kernel weight of plants grown in normal conditions. Both traits showed a strong negative correlation with the transcript level of the target gene and the paralogs. The characteristics of barley lines with silenced expression of HvGSK1.1 are compatible with the expected phenotypes of plants with enhanced BR signaling. The results show that manipulation of the GSK-encoding genes provides data to explore their biological functions and confirm it as a feasible strategy to generate plants with improved agricultural traits.


Assuntos
Quinases da Glicogênio Sintase/fisiologia , Hordeum/fisiologia , Tolerância ao Sal/genética , Sementes/crescimento & desenvolvimento , Biomassa , Brassinosteroides/metabolismo , Inativação Gênica , Proteínas de Plantas/fisiologia , Plantas Geneticamente Modificadas/enzimologia , Plantas Geneticamente Modificadas/crescimento & desenvolvimento
12.
Int J Mol Sci ; 21(13)2020 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-32645965

RESUMO

TaCKX, Triticum aestivum (cytokinin oxidase/dehydrogenase) family genes influence the development of wheat plants by the specific regulation of cytokinin content in different organs. However, their detailed role is not known. The TaCKX1, highly and specifically expressed in developing spikes and in seedling roots, was silenced by RNAi-mediated gene silencing via Agrobacterium tumefaciens and the effect of silencing was investigated in 7 DAP (days after pollination) spikes of T1 and T2 generations. Various levels of TaCKX1 silencing in both generations influence different models of co-expression with other TaCKX genes and parameters of yield-related traits. Only a high level of silencing in T2 resulted in strong down-regulation of TaCKX11 (3), up-regulation of TaCKX2.1, 2.2, 5, and 9 (10), and a high yielding phenotype. This phenotype is characterized by a higher spike number, grain number, and grain yield, but lower thousand grain weight (TGW). The content of most of cytokinin forms in 7 DAP spikes of silenced T2 lines increased from 23% to 76% compared to the non-silenced control. The CKs cross talk with other phytohormones. Each of the tested yield-related traits is regulated by various up- or down-regulated TaCKX genes and phytohormones. The coordinated effect of TaCKX1 silencing on the expression of other TaCKX genes, phytohormone levels in 7 DAP spikes, and yield-related traits in silenced T2 lines is presented.


Assuntos
Regulação da Expressão Gênica de Plantas/genética , Genes de Plantas/genética , Proteínas de Plantas/genética , Triticum/genética , Citocininas/genética , Regulação para Baixo/genética , Grão Comestível/genética , Oxirredutases/genética , Fenótipo , Reguladores de Crescimento de Plantas/genética , Folhas de Planta/genética , Raízes de Plantas/genética , Plantas Geneticamente Modificadas/genética , Plântula/genética
13.
Theor Appl Genet ; 130(6): 1081-1098, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28314933

RESUMO

KEY MESSAGE: Current development of advanced biotechnology tools allows us to characterize the role of key genes in plant productivity. The implementation of this knowledge in breeding strategies might accelerate the progress in obtaining high-yielding cultivars. The achievements of the Green Revolution were based on a specific plant ideotype, determined by a single gene involved in gibberellin signaling or metabolism. Compared with the 1950s, an enormous increase in our knowledge about the biological basis of plant productivity has opened new avenues for novel breeding strategies. The large and complex genomes of diploid barley and hexaploid wheat represent a great challenge, but they also offer a large reservoir of genes that can be targeted for breeding. We summarize examples of productivity-related genes/mutants in wheat and barley, identified or characterized by means of modern biology. The genes are classified functionally into several groups, including the following: (1) transcription factors, regulating spike development, which mainly affect grain number; (2) genes involved in metabolism or signaling of growth regulators-cytokinins, gibberellins, and brassinosteroids-which control plant architecture and in consequence stem hardiness and grain yield; (3) genes determining cell division and proliferation mainly impacting grain size; (4) floral regulators influencing inflorescence architecture and in consequence seed number; and (5) genes involved in carbohydrate metabolism having an impact on plant architecture and grain yield. The implementation of selected genes in breeding programs is discussed, considering specific genotypes, agronomic and climate conditions, and taking into account that many of the genes are members of multigene families.


Assuntos
Genes de Plantas , Hordeum/genética , Sementes/crescimento & desenvolvimento , Triticum/genética , Brassinosteroides/química , Metabolismo dos Carboidratos , Citocininas/genética , Flores/fisiologia , Giberelinas/genética , Melhoramento Vegetal , Proteínas de Plantas/genética , Fatores de Transcrição/genética
14.
BMC Genomics ; 16: 742, 2015 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-26438375

RESUMO

BACKGROUND: Inoculation of wheat plants with Puccinia triticina (Pt) spores activates a wide range of host responses. Compatible Pt interaction with susceptible Thatcher plants supports all stages of the pathogen life cycle. Incompatible interaction with TcLr9 activates defense responses including oxidative burst and micronecrotic reactions associated with the pathogen's infection structures and leads to complete termination of pathogen development. These two contrasting host-pathogen interactions were a foundation for transcriptome analysis of incompatible wheat-Pt interaction. METHODS: A suppression subtractive hybridization (SSH) library was constructed using cDNA from pathogen-inoculated susceptible Thatcher and resistant TcLr9 isogenic lines. cDNA represented steps of wheat-brown rust interactions: spore germination, haustorium mother cell (HMC) formation and micronecrotic reactions. All ESTs were clustered and validated by similarity search to wheat genome using BLASTn and sim4db tools. qRT-PCR was used to determine transcript levels of selected ESTs after inoculation in both lines. RESULTS AND DISCUSSION: Out of 793 isolated cDNA clones, 183 were classified into 152 contigs. 89 cDNA clones and encoded proteins were functionally annotated and assigned to 5 Gene Ontology categories: catalytic activity 48 clones (54 %), binding 32 clones (36 %), transporter activity 6 clones (7 %), structural molecule activity 2 clones (2 %) and molecular transducer activity 1 clone (1 %). Detailed expression profiles of 8 selected clones were analyzed using the same plant-pathogen system. The strongest induction after pathogen infection and the biggest differences between resistant and susceptible interactions were detected for clones encoding wall-associated kinase (GenBank accession number JG969003), receptor with leucine-rich repeat domain (JG968955), putative serine/threonine protein kinase (JG968944), calcium-mediated signaling protein (JG968925) and 14-3-3 protein (JG968969). CONCLUSIONS: The SSH library represents transcripts regulated by pathogen infection during compatible and incompatible interactions of wheat with P. triticina. Annotation of selected clones confirms their putative roles in successive steps of plant-pathogen interactions. The transcripts can be categorized as defense-related due to their involvement in either basal defense or resistance through an R-gene mediated reaction. The possible involvement of selected clones in pathogen recognition and pathogen-induced signaling as well as resistance mechanisms such as cell wall enforcement, oxidative burst and micronecrotic reactions is discussed.


Assuntos
Basidiomycota/genética , Resistência à Doença/genética , Interações Hospedeiro-Patógeno , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Triticum/microbiologia , Biologia Computacional/métodos , Etiquetas de Sequências Expressas , Perfilação da Expressão Gênica , Regulação Fúngica da Expressão Gênica , Biblioteca Gênica , Modelos Biológicos , Anotação de Sequência Molecular , Fatores de Tempo
15.
BMC Plant Biol ; 13: 190, 2013 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-24279512

RESUMO

BACKGROUND: Secaloindoline a (Sina) and secaloindoline b (Sinb) genes of hexaploid triticale (x Triticosecale Wittmack) are orthologs of puroindoline a (Pina) and puroindoline b (Pinb) in hexaploid wheat (Triticum aestivum L.). It has already been proven that RNA interference (RNAi)-based silencing of Pina and Pinb genes significantly decreased the puroindoline a and puroindoline b proteins in wheat and essentially increased grain hardness (J Exp Bot 62:4025-4036, 2011). The function of Sina and Sinb in triticale was tested by means of RNAi silencing and compared to wheat. RESULTS: Novel Sina and Sinb alleles in wild-type plants of cv. Wanad were identified and their expression profiles characterized. Alignment with wheat Pina-D1a and Pinb-D1a alleles showed 95% and 93.3% homology with Sina and Sinb coding sequences. Twenty transgenic lines transformed with two hpRNA silencing cassettes directed to silence Sina or Sinb were obtained by the Agrobacterium-mediated method. A significant decrease of expression of both Sin genes in segregating progeny of tested T1 lines was observed independent of the silencing cassette used. The silencing was transmitted to the T4 kernel generation. The relative transcript level was reduced by up to 99% in T3 progeny with the mean for the sublines being around 90%. Silencing of the Sin genes resulted in a substantial decrease of secaloindoline a and secaloindoline b content. The identity of SIN peptides was confirmed by mass spectrometry. The hardness index, measured by the SKCS (Single Kernel Characterization System) method, ranged from 22 to 56 in silent lines and from 37 to 49 in the control, and the mean values were insignificantly lower in the silent ones, proving increased softness. Additionally, the mean total seed protein content of silenced lines was about 6% lower compared with control lines. Correlation coefficients between hardness and transcript level were weakly positive. CONCLUSIONS: We documented that RNAi-based silencing of Sin genes resulted in significant decrease of their transcripts and the level of both secaloindoline proteins, however did not affect grain hardness. The unexpected, functional differences of Sin genes from triticale compared with their orthologs, Pin of wheat, are discussed.


Assuntos
Grão Comestível/genética , Genes de Plantas/genética , Sementes/química , Sementes/genética , Homologia de Sequência do Ácido Nucleico , Triticum/genética , Agrobacterium/metabolismo , Alelos , Cruzamentos Genéticos , Eletroforese em Gel de Poliacrilamida , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Inativação Gênica , Dureza , Indóis/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Característica Quantitativa Herdável , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Alinhamento de Sequência , Transformação Genética
16.
BMC Plant Biol ; 12: 206, 2012 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-23134638

RESUMO

BACKGROUND: CKX genes encode cytokinin dehydrogenase enzymes (CKX), which metabolize cytokinins in plants and influence developmental processes. The genes are expressed in different tissues and organs during development; however, their exact role in barley is poorly understood. It has already been proven that RNA interference (RNAi)-based silencing of HvCKX1 decreased the CKX level, especially in those organs which showed the highest expression, i.e. developing kernels and roots, leading to higher plant productivity and higher mass of the roots [1]. The same type of RNAi construct was applied to silence HvCKX2 and analyze the function of the gene. Two cultivars of barley were transformed with the same silencing and selection cassettes by two different methods: biolistic and via Agrobacterium. RESULTS: The mean Agrobacterium-mediated transformation efficiency of Golden Promise was 3.47% (±2.82). The transcript level of HvCKX2 in segregating progeny of T(1) lines was decreased to 34%. The reduction of the transcript in Agrobacterium-derived plants resulted in decreased CKX activity in the developing and developed leaves as well as in 7 DAP (days after pollination) spikes. The final phenotypic effect was increased productivity of T(0) plants and T(1) lines. Higher productivity was the result of the higher number of seeds and higher grain yield. It was also correlated with the higher 1000 grain weight, increased (by 7.5%) height of the plants and higher (from 0.5 to 2) numbers of spikes. The transformation efficiency of Golden Promise after biolistic transformation was more than twice as low compared to Agrobacterium. The transcript level in segregating progeny of T(1) lines was decreased to 24%. Otherwise, the enzyme activity found in the leaves of the lines after biolistic transformation, especially in cv. Golden Promise, was very high, exceeding the relative level of the control lines. These unbalanced ratios of the transcript level and the activity of the CKX enzyme negatively affected kernel germination or anther development and as a consequence setting the seeds. The final phenotypic effect was the decreased productivity of T(0) plants and T(1) lines obtained via the biolistic silencing of HvCKX2. CONCLUSION: The phenotypic result, which was higher productivity of silenced lines obtained via Agrobacterium, confirms the hypothesis that spatial and temporal differences in expression contributed to functional differentiation. The applicability of Agrobacterium-mediated transformation for gene silencing of developmentally regulated genes, like HvCKX2, was proven. Otherwise low productivity and disturbances in plant development of biolistic-silenced lines documented the unsuitability of the method. The possible reasons are discussed.


Assuntos
Agrobacterium/fisiologia , Biolística/métodos , Inativação Gênica , Hordeum/genética , Oxirredutases/genética , Proteínas de Plantas/genética , Transformação Genética , Cruzamentos Genéticos , Flores/metabolismo , Regulação da Expressão Gênica de Plantas , Oxirredutases/metabolismo , Fenótipo , Folhas de Planta/enzimologia , Folhas de Planta/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/enzimologia , Raízes de Plantas/genética , Plantas Geneticamente Modificadas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
17.
Cell Mol Biol Lett ; 17(1): 107-23, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22207334

RESUMO

Virus-induced gene silencing is an important tool for functional gene analysis and the vector based on Barley stripe mosaic virus (BSMV) is widely used for the purpose in monocots. Of the tripartite BSMV genome, currently the BSMV:γMCS molecule is used to clone a fragment of a target gene. As an alternative, the BSMV:ß molecule was engineered with a unique BamHI site between the open reading frame of ßc (ORF ßc) and poly(A). The mixture of RNA particles α, ßBamHI and γMCS was fully infectious. Barley phytoene desaturase and wheat phospholipase Dα fragments were cloned to ßBamHI and γMCS. Delivery of the target gene fragment in γMCS induced stronger silencing, while delivery in ßBamHI yielded more stable transcript reduction. A quantitative analysis (qRT-PCR) of the transcripts showed that the silencing induced with a fragment carried in both particles was stronger and more stable than that from a fragment placed in one particle. The modification of ß enables simultaneous silencing of two genes. Quantifying the ß and γ particles in virus-inoculated plants revealed a 2.5-fold higher level of γ than ß, while the stability of the insert was higher in ß compared with γ. The possible influence of the relative quantity of ß and γ particles in virus-inoculated plants on insert stability and gene silencing efficiency is discussed.


Assuntos
Inativação Gênica , Vetores Genéticos/metabolismo , Hordeum/virologia , Vírus do Mosaico/genética , Clonagem Molecular , Vetores Genéticos/química , Hordeum/enzimologia , Oxirredutases/genética , Oxirredutases/metabolismo , Fosfolipase D/genética , Fosfolipase D/metabolismo , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Triticum/enzimologia
18.
J Agric Food Chem ; 70(46): 14571-14587, 2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36350344

RESUMO

Global climate change and the urgency to transform food crops require substantial breeding efforts to meet the food security challenges. Barley, an important cereal, has remained a preferential host of phytotoxic diseases caused by the Fusarium graminearum that not only severely reduces the crop yield but also compromises its food quality due to the accumulation of mycotoxins. To develop resistance against Fusarium infections, a better understanding of the host-pathogen interaction is inevitable and could be tracked through molecular insights. Here, we focused precisely on the potential gene targets that are exclusive to this devastating pathosystem and could be harnessed for fast breeding of barley. We also discuss the eco-friendly applications of nanobio hybrid and the CRISPR technology for barley protection. This review covers the critical information gaps within the subject and may be useful for the sustainable improvement of barley from the perspective of food and environmental safety concerns.


Assuntos
Fusariose , Fusarium , Hordeum , Micotoxinas , Hordeum/genética , Transcriptoma , Doenças das Plantas/prevenção & controle , Doenças das Plantas/genética , Melhoramento Vegetal , Fusarium/genética , Inocuidade dos Alimentos
19.
J Exp Bot ; 62(11): 4025-36, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21504879

RESUMO

The RNAi-mediated silencing of Pina and Pinb, the two genes responsible for the grain texture of allohexaploid wheat, was induced and analysed in two wheat cultivars, Kontesa and Torka. A characterization of the two genes in non-transgenic plants revealed that Pinb carries a point mutation, designated Pinb-D1c in both cultivars. This mutation does not influence transcript abundance or protein content. Two silencing cassettes of the hpRNA type were constructed and used for stable transformation via Agrobacterium. In total, 43 transgenic lines representing the two cultivars were obtained, transformed with the silencing cassettes for Pina or for Pinb or co-transformed with both cassettes. The relative transcript levels of the two genes in the same progeny plant were found to be similar, independent of the silencing cassette used. The reduction in the Pina and Pinb transcript levels in the segregating T(1) progeny of Kontesa and Torka transformed with one of the silencing cassettes exceeded 80%. Co-transformation with the silencing cassettes for both genes resulted in a reduction of over 91% of Pina and Pinb transcripts in some segregating T(1) progeny of Kontesa. The silencing was transmitted to the T(4) kernel generation of the T(3) lines. A significant reduction or lack of both puroindoline proteins in the silenced lines correlated with an essential increase in grain hardness. The discussion covers some new insights into the function of the Pin genes, including the simultaneous silencing of both, independent of the siRNA signal.


Assuntos
Triticum/genética , Grão Comestível/genética , Grão Comestível/metabolismo , Dureza , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Interferência de RNA , Sementes/genética , Sementes/metabolismo , Triticum/metabolismo
20.
J Exp Bot ; 61(6): 1839-51, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20335409

RESUMO

Stable RNA interference-based technology was used to silence the expression of the HvCKX1 gene in barley and the TaCKX1 gene in wheat and triticale. The silencing cassettes containing the fragments of these genes in the sense and antisense orientations were cloned into the pMCG161 binary vector and used for Agrobacterium-based transformation. Out of the five cultivars representing the three studied species, transgenic plants were obtained from one barley cultivar Golden Promise, one wheat cultivar Kontesa, and one triticale cultivar Wanad. Almost 80% of 52 regenerated lines of Golden Promise exhibited significantly decreased cytokinin oxidase/dehydrogenase (CKX) enzyme activity in bulked samples of their T(1) roots. There was a positive correlation between the enzyme activity and the plant productivity, expressed as the yield, the number of seeds per plant, and the 1000 grain weight. Additionally, these traits were associated with a greater root mass. Lower CKX activity led to a higher plant yield and root weight. This higher plant productivity and altered plant architecture were maintained in a population of segregating T(1) plants. The levels of HvCKX1 transcript accumulation were measured in various tissues of Golden Promise and Scarlett non-transgenic barley plants in order to choose the most appropriate plant organs to study the expression and/or silencing of the gene in those transgenic lines. The highest levels of the HvCKX1 transcript were detected in spikes 0 days after pollination (0 DAP), 7 DAP, and 14 DAP, and in the seedling roots. The analysis of HvCKX1 gene expression and CKX enzyme activity and the evaluation of the phenotype were performed in the progeny of seven selected transgenic T(1) lines. The relative expression of HvCKX1 measured in the spikes 0 DAP and 14 DAP, respectively, ranged from 0.52+/-0.04 to 1.15+/-0.26 and from 0.47+/-0.07 to 0.89+/-0.15. The lowest relative values were obtained for the enzyme activity in the spikes at 0 DAP, which ranged from 0.15+/-0.02 to 1.05+/-0.14 per single progeny plant. Based on these three values, the coefficient of HvCKX1 silencing in the spikes was estimated. Possible mechanisms leading to higher plant productivity via the silencing of HvCKX1 and a decrease in CKX enzyme activity are discussed.


Assuntos
Hordeum/enzimologia , Oxirredutases/metabolismo , Plantas Geneticamente Modificadas/enzimologia , Hordeum/genética , Hordeum/crescimento & desenvolvimento , Oxirredutases/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Reação em Cadeia da Polimerase , Interferência de RNA , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Plântula/enzimologia , Plântula/genética , Plântula/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA