Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Sci Rep ; 13(1): 15455, 2023 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-37723280

RESUMO

Polystyrene (PS) is a thermoplastic polymer used in food packaging and the manufacture of trays and cups, among other applications. In this work, the preparation of a membrane by electrospinning blended sulphonated expanded PS waste and polybutylenesuccinate (PBS) is described. The fiber quality is controlled by selecting the right polymers' ratios and solvents. Investigation of the structure of the produced membranes by Fourier transform infrared spectroscopy-attenuated total reflectance confirmed the successful sulphonation of expanded PS and the appearance of characteristic (PBS) bands in the prepared blends. Morphology study of the electrospun membranes using a scanning electron microscope revealed that the quality of the fibers is improved significantly by increasing the amount of PBS in the blend solution. Moreover, continuous and more homogenous fibers are produced by increasing the ratio of PBS to 2%. The efficiency of the prepared membranes in dye removal was tested using methylene blue. The effects of different parameters such as, pH, contact time, temperature, and dye concentration have been studied. Also, kinetic and adsorption isotherm models as well as the durability of the prepared membranes were investigated. The membrane prepared from PSS/1% PBS demonstrated the highest dye uptake (846 mol) with good regeneration efficiency. The adsorption process was found to be endothermic and fits the Freundlich isotherm and pseudo-second-order kinetic model. The values of activation energy for the adsorption process are 36.98, 30.70, and 43.40 kJ/mol over PSS, PSS/1% PBS and PSS/2% PBS, respectively.

2.
Sci Rep ; 13(1): 14402, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37658123

RESUMO

Ferric chloride (FeCl3) and Genipin were utilized as cross-linkers to create two types of nanocomposite hydrogels through physical and covalent cross-linking methods, respectively. The hydrogels were composed of unmodified Gum Arabic (GA), Chitosan (Ch), and natural nano-Hydroxyapatite (nHA) using an acrylic acid solvent. Both the natural nHA and the FeCl3 vs. genipin cross-linked GA/Ch/nHA nano-composite hydrogels were prepared and characterized using various in vitro and in vivo analysis techniques. The use of FeCl3 and genipin cross-linkers resulted in the formation of novel hydrogels with compressive strengths of (15.43-22.20 MPa), which are comparable to those of natural cortical bone. In vivo evaluation was conducted by creating calvarial defects (6 mm) in Sprague-Dawley male rats. The results showed the formation of new, full-thickness bone at the implantation sites in all groups, as evidenced by digital planar tomography and histological staining with Hematoxylin and Eosin stain (H & E). Additionally, the use of genipin as a cross-linker positively affected the hydrogel's hydrophilicity and porosity. These findings justify further investigation into the potential of these nanocomposite hydrogels for bone regeneration applications.


Assuntos
Acacia , Quitosana , Masculino , Ratos , Animais , Ratos Sprague-Dawley , Goma Arábica , Nanogéis , Regeneração Óssea , Durapatita , Hidrogéis
3.
Sci Rep ; 13(1): 21879, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38072847

RESUMO

The research focuses on utilizing gamma irradiation to synthesize polyacrylic acid-co-polyacrylamide p(AAm-co-AAc) hydrogels. The effect of synthetic parameters on physicochemical features of p(AAm-co-AAc) hydrogls were examined, including acrylic acid (AAc): acrylamide (AAm) weight ratios, monomer concentration, and gamma irradiation dosage (kGy). At the optimum synthetic conditions (30 kGy and 75% AAc), different chemical modifications are explored to incorporate sulfonate, hydroxyl, carboxyl, cysteine, thiol, and amine functional groups within the bare hydrogel (Cpd 0) structure. Fourier-transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM) analyses confirmed the success development of functionalized hydrogels (namely Cpd 1 to 6) with three-dimensional porous structures. These modified hydrogels include Cpd 1, a sulfonated hydrogel through a sulfonation reaction; Cpd 2, modified via NaOH hydrolysis; Cpd 3, modified using thionyl chloride; Cpd 4, incorporating cysteine modification through reaction with cysteine; Cpd 5, with 4-(Dimethylamino) benzaldehyde; and Cpd 6, modified with 3,4-Dimethylbenzoic acid.The effect of hydrogel composition and surface functionalities on the swelling capacity and interactions with scale-forming/heavy metal ions (e.g., Ba2+, Sr2+, and Cu2+) was investigated in saline water solution (NaCl = 1000 mg/L). Batch adsorption studies reveal that all modified hydrogels exhibited higher removal efficiency for the three metal ions than unmodified p(AAm-co-AAc) hydrogel, validating the key role of surface functionalities in tailoring hydrogel affinity for metal ions adsorption. Amongst these, NaOH-treated hydrogel (Cpd 2) outperformed all other modified ones in the removal of Cu2+, Ba2+, and Sr2+ ions, with maximum capacities of 13.67, 36.4, and 27.31 mg/g, respectively. Based on adsorption isotherm and kinetic modeling, the adsorption process of the three metal ions onto all modified hydrogels better obeyed Freundlich isotherm and pseudo-first-order kinetic models. Thermodynamic studies also indicated that the adsorption behavior of Sr2+ ions can exhibit both exothermic and endothermic characteristics, depending on the nature of hydrogel surface chemistry. Conversely, the adsorption process of Cu2+ and Ba2+ ions onto all modified hydrogels is endothermic, suggesting favorable chemical adsorption mechanisms. These findings reveal that the specific adsorption performance of hydrogel is dependent on the type of modification and the targeted heavy metal ions. Based on the nature of hydrogel surface functionality, surface modifications can change the charge density, hydrophilicity, and overall chemical environment of the hydrogel, offering a versatile approach to optimize the adsorption affinity/selectivity of hydrogel's in removing scale-forming/heavy metals from water solutions.

4.
Pharmaceuticals (Basel) ; 16(5)2023 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-37242485

RESUMO

Regenerative medicine, and dentistry offers enormous potential for enhancing treatment results and has been fueled by bioengineering breakthroughs over the previous few decades. Bioengineered tissues and constructing functional structures capable of healing, maintaining, and regenerating damaged tissues and organs have had a broad influence on medicine and dentistry. Approaches for combining bioinspired materials, cells, and therapeutic chemicals are critical in stimulating tissue regeneration or as medicinal systems. Because of its capacity to maintain an unique 3D form, offer physical stability for the cells in produced tissues, and replicate the native tissues, hydrogels have been utilized as one of the most frequent tissue engineering scaffolds during the last twenty years. Hydrogels' high water content can provide an excellent conditions for cell viability as well as an architecture that mimics real tissues, bone, and cartilage. Hydrogels have been used to enable cell immobilization and growth factor application. This paper summarizes the features, structure, synthesis and production methods, uses, new challenges, and future prospects of bioactive polymeric hydrogels in dental and osseous tissue engineering of clinical, exploring, systematical and scientific applications.

5.
ACS Omega ; 8(23): 20283-20292, 2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37323399

RESUMO

Aerogel is a high-performance thermal resistance material desired for high-temperature applications like dye-sensitized solar cells, batteries, and fuel cells. To increase the energy efficiency of batteries, an aerogel is required to reduce the energy loss arising from the exothermal reaction. This paper synthesized a different composition of inorganic-organic hybrid material by growing the silica aerogel inside a polyacrylamide (PAAm) hydrogel. The hybrid PaaS/silica aerogel was synthesized using different irradiation doses of gamma rays (10-60 kGy) and different solid contents of PAAm (6.25, 9.37, 12.5, and 30 wt %). Here, PAAm is used as an aerogel formation template and carbon precursor after the carbonization process at a temperature of (150, 350, and 1100 °C). The hybrid PAAm/silica aerogel was converted into aluminum/silicate aerogels after soaking in a solution of AlCl3. Then, the carbonization process takes place at a temperature of (150, 350, and 1100 °C) for 2 h to provide C/Al/Si aerogels with a density of around 0.18-0.040 gm/cm3 and porosity of 84-95%. The hybrid C/Al/Si aerogels presented interconnected networks of porous structures with different pore sizes depending on the carbon and PAAm contents. The sample with a solid content of 30% PAAm in the C/Al/Si aerogel was composed of interconnected fibrils whose diameter was about 50 µm. The structure after carbonization at 350 and 1100 °C was a condensed opening porous 3D network structure. This sample gives the optimum thermal resistance and a very low thermal conductivity of 0.073 (w/m·k) at low carbon content (2.71% at temperature 1100 °C) and high vpore (95%) compared with carbon content 42.38% and vpore (93%) which give 0.102 (w/m·k). This is because at 1100 °C, the carbon atoms evolve to leave an area between Al/Si aerogel particles, increasing the pore size. Furthermore, the Al/Si aerogel had excellent removal ability for various oil samples.

6.
Sci Rep ; 12(1): 13675, 2022 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-35953625

RESUMO

This work presents novel magnetic mixed matrix poly(ethersulfone) (PES) membranes that combine the advantages of low-cost common PES polymer and low-cost iron-nickel magnetic alloys. Moreover, the presented magnetic mixed matrix PES membranes were fabricated and used without applying an external magnetic field during either the membrane casting or the separating process. The fabricated magnetic membranes were prepared using the phase inversion technique and N-methylpyrrolidone and N,N-Dimethylformamide solvents mixture with volumetric ratio 1:9 and Lithium chloride as an additive. The used iron-nickel magnetic alloys were prepared by a simple chemical reduction method with unique morphologies (Fe10Ni90; starfish-like and Fe20Ni80; necklace-like). The fabricated membranes were characterized using Scanning Electron Microscope (SEM) and Scanning-Transmission Electron Microscope (STEM) imaging, energy dispersive X-ray (EDX), Thermogravimetric (TGA), and X-ray diffraction (XRD). Also, static water contact angle, membrane thickness, surface roughness, membrane porosity, membrane tensile strength as well as Vibrating Sample Magnetometer (VSM) analysis and oxygen transition rate (OTR) were determined. Moreover, the effect of alloy concentration and using Lithium chloride as an additive on the properties of the fabricated blank PES and magnetic mixed matrix PES membranes were studied. The presented novel magnetic mixed matrix PES membranes have high coercivity up to 106 (emu/g) with 3.61 × 10-5 cm3/cm2·s OTR compared to non-oxygen permeable blank PES membranes. The presented novel magnetic mixed matrix PES membranes have good potential in (oxygen) gas separation.

7.
Polymers (Basel) ; 14(15)2022 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-35956568

RESUMO

In this work, physical cross-linking was used to create nanocomposite hydrogels composed of unmodified gum arabic (GA), chitosan (Ch), and natural nanohydroxyapatite (nHA), using an acrylic acid (AA) solvent. Different GA/chitosan contents (15%, 25%, and 35% of the used AA) as well as different nHA contents (2, 5, and 10 wt.%), were used and studied. The natural nHA and the fabricated GA/Ch/nHA nanocomposite hydrogels were characterized using different analysis techniques. Using acrylic acid solvent produced novel hydrogels with compressive strength of 15.43-22.20 MPa which is similar to that of natural cortical bone. The addition of natural nHA to the hydrogels resulted in a significant improvement in the compressive strength of the fabricated hydrogels. In vitro studies of water absorption and degradation-and in vivo studies-confirmed that the nanocomposite hydrogels described here are biodegradable, biocompatible, and facilitate apatite formation while immersed in the simulated body fluid (SBF). In light of these findings, the GA/Ch/nHA nanocomposite hydrogels are recommended for preparing bioactive nanoscaffolds for testing in bone regeneration applications.

8.
Membranes (Basel) ; 12(12)2022 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-36557166

RESUMO

This work presents novel magnetic mixed cellulose-based matrix membranes that combine the advantages of a low-cost common polymer matrix, such as cellulose acetate (CA), and a low-cost magnetic filler. Moreover, the presented magnetic mixed CA matrix membranes were fabricated and used without applying an external magnetic field during either the membrane casting or the separating process. Poly(methylmethacrylate) and lithium chloride were used in order to improve the mechanical properties and porosity of the fabricated membranes. The iron-nickel magnetic alloys used were prepared through a simple chemical reduction method with unique morphologies (Fe10Ni90-starfish-like and Fe20Ni80-necklace-like). The novel magnetic mixed CA matrix membranes fabricated were characterized using different analysis techniques, including SEM, EDX, XRD, TGA, and FTIR-ATR analyses. Furthermore, the static water contact angle, membrane thickness, surface roughness, tensile strength, and membrane porosity (using ethanol and water) were determined. In addition, vibrating sample magnetometer (VSM) analysis was conducted and the oxygen transition rate (OTR) was studied. The magnetic mixed CA matrix membrane containing starfish-like Fe10Ni90 alloy was characterized by high coercivity (109 Oe) and an efficient 1.271 × 10-5 cm3/(m2·s) OTR compared to the blank CA membrane with 19.8 Oe coercivity and no OTR. The effects of the polymeric matrix composition, viscosity, and compatibility with the alloys/fillers used on the structure and performance of the fabricated mixed CA matrix membranes compared to the previously used poly(ethersufone) polymeric matrix are discussed and highlighted. The novel magnetic mixed CA matrix membranes presented have good potential for use in the oxygen-enrichment process.

9.
Polymers (Basel) ; 13(5)2021 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-33806655

RESUMO

In this work, a novel polymeric membrane was innovated in terms of composition and preparation techniques. A blend of poly(vinylidene fluoride-co-hexafluoropropylene) (PcH) and poly(ethersulfone) (PES) (18 wt.% total polymer concentration) was prepared using a N-methylpyrrolidone (NMP) and N, N-Dimethylformamide (DMF) solvents mixture, while Lithium chloride (0.05-0.5 wt.%) was used as an additive. The electrospinning and phase inversion techniques were used together to obtain a novel membrane structure. The prepared membranes were characterized using scanning electron microscope imaging, energy dispersive X-Ray, differential scanning calorimeter, thermogravimetric analysis, and Fourier transfer infrared spectroscopy-attenuated total reflectance analyses. Moreover, the static water contact angle, membrane thickness, porosity, surface roughness as well as water vapor permeability were determined. ImageJ software was used to estimate the average fiber diameter. Additionally, the effect of the change of PcH concentration and coagulation bath temperature on the properties of the fabricated membrane was studied. The novel developed membrane has shown a good efficiency in terms of properties and features, as a membrane suitable for membrane distillation (MD); a high porosity (84.4% ± 0.6), hydrophobic surface (136.39° ± 3.1 static water contact angle), and a water vapor permeability of around 4.37 × 10-5 g·m/m2·day·Pa were obtained. The prepared membrane can be compared to the MD membranes commercially available in terms of properties and economic value.

10.
Nanomaterials (Basel) ; 11(11)2021 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-34835799

RESUMO

Iron-nickel alloy is an example of bimetallic nanostructures magnetic alloy, which receives intensive and significant attention in recent years due to its desirable superior ferromagnetic and mechanical characteristics. In this work, a unique starfish-like shape of an iron-nickel alloy with unique magnetic properties was presented using a simple, effective, high purity, and low-cost chemical reduction. There is no report on the synthesis of such novel shape without complex precursors and/or surfactants that increase production costs and introduce impurities, so far. The synthesis of five magnetic iron-nickel alloys with varying iron to nickel molar ratios (10-50% Fe) was undertaken by simultaneously reducing Fe(II) and Ni(II) solution using hydrazine hydrate as a reducing agent in strong alkaline media for 15 min at 95-98 °C. The effect of reaction volume and total metal concentration on the properties of the synthesized alloys was studied. Alloy morphology, chemical composition, crystal structure, thermal stability, and magnetic properties of synthesized iron-nickel alloys were characterized by means of SEM, TEM, EDX, XRD, DSC and VSM. ImageJ software was used to calculate the size of the synthesized alloys. A deviation from Vegard's law was recorded for iron molar ration higher than 30%., in which superstructure phase of FeNi3 was formed and the presence of defects in it, as well as the dimensional effects of nanocrystals. The saturation magnetization (Ms), coercivity (Hc), retentivity (Mr), and squareness are strongly affected by the molar ratio of iron and nickel and reaction volume as well as the total metal concentration.

11.
Membranes (Basel) ; 10(9)2020 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-32927801

RESUMO

In this work, the efficiency of a conventional chlorination pretreatment is compared with a novel modified low-fouling polyethersulfone (PES) ultrafiltration (UF) membrane, in terms of bacteria attachment and membrane biofouling reduction. This study highlights the use of membrane modification as an effective strategy to reduce bacterial attachment, which is the initial step of biofilm formation, rather than using antimicrobial agents that can enhance bacterial regrowth. The obtained results revealed that the filtration of pretreated, inoculated seawater using the modified PES UF membrane without the pre-chlorination step maintained the highest initial flux (3.27 ± 0.13 m3·m-2·h-1) in the membrane, as well as having one and a half times higher water productivity than the unmodified membrane. The highest removal of bacterial cells was achieved by the modified membrane without chlorination, in which about 12.07 × 104 and 8.9 × 104 colony-forming unit (CFU) m-2 bacterial cells were retained on the unmodified and modified membrane surfaces, respectively, while 29.4 × 106 and 0.42 × 106 CFU mL-1 reached the filtrate for the unmodified and modified membranes, respectively. The use of chlorine disinfectant resulted in significant bacterial regrowth.

12.
Membranes (Basel) ; 10(1)2020 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-31963230

RESUMO

In this work, a novel triple-layer nanocomposite membrane prepared with polyethersulfone (PES)/carbon nanotubes (CNTs) as the primary bulk material and poly (vinylidene fluoride-co-hexafluoro propylene) (PcH)/CNTs as the outer and inner surfaces of the membrane by using electrospinning method is introduced. Modified PES with CNTs was chosen as the bulk material of the triple-layer membrane to obtain a high porosity membrane. Both the upper and lower surfaces of the triple-layer membrane were coated with PcH/CNTs using electrospinning to get a triple-layer membrane with high total porosity and noticeable surface hydrophobicity. Combining both characteristics, next to an acceptable bulk hydrophobicity, resulted in a compelling membrane for membrane distillation (MD) applications. The prepared membrane was utilized in a direct contact MD system, and its performance was evaluated in different salt solution concentrations, feed velocities and feed solution temperatures. The results of the prepared membrane in this study were compared to those reported in previously published papers. Based on the evaluated membrane performance, the triple-layer nanocomposite membrane can be considered as a potential alternative with reasonable cost, relative to other MD membranes.

13.
Membranes (Basel) ; 9(7)2019 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-31330993

RESUMO

Polymeric membranes have been widely employed for water purification applications. However, the trade-off issue between the selectivity and permeability has limited its use in various applications. Mixed matrix membranes (MMMs) were introduced to overcome this limitation and to enhance the properties and performance of polymeric membranes by incorporation of fillers such as silica and zeolites. Metal-organic frameworks (MOFs) are a new class of hybrid inorganic-organic materials that are introduced as novel fillers for incorporation in polymeric matrix to form composite membranes for different applications especially water desalination. A major advantage of MOFs over other inorganic fillers is the possibility of preparing different structures with different pore sizes and functionalities, which are designed especially for a targeted application. Different MMMs fabrication techniques have also been investigated to fabricate MMMs with pronounced properties for a specific application. Synthesis techniques include blending, layer-by-layer (LBL), gelatin-assisted seed growth and in situ growth that proved to give the most homogenous dispersion of MOFs within the organic matrix. It was found that the ideal filler loading of MOFs in different polymeric matrices is 10%, increasing the filler loading beyond this value led to formation of aggregates that significantly decreased the MOFs-MMMs performance. Despite the many merits of MOFs-MMMs, the main challenge facing the upscaling and wide commercial application of MOFs-MMMs is the difficult synthesis conditions of the MOFs itself and the stability and sustainability of MOFs-MMMs performance. Investigation of new MOFs and MOFs-MMMs synthesis techniques should be carried out for further industrial applications. Among these new synthesis methods, green MOFs synthesis has been highlighted as low cost, renewable, environmentally friendly and recyclable starting materials for MOFs-MMMs. This paper will focus on the investigation of the effect of different recently introduced MOFs on the performance of MOFs-MMMs in water purification applications.

14.
Membranes (Basel) ; 8(1)2018 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-29301357

RESUMO

In this work, a chitosan-gelatin-ferulic acid blend was used in different ratios for preparing novel films that can be used in biomedical applications. Both acetic and formic acid were tested as solvents for the chitosan-gelatin-ferulic acid blend. Glycerol was tested as a plasticizer. The thickness, mechanical strength, static water contact angle and water uptake of the prepared films were determined. Also, the prepared films were characterized using different analysis techniques such as Fourier transform infrared spectroscopy (FT-IR) analysis, X-ray diffraction (XRD), thermal gravimetric analysis (TGA), differential scanning calorimetry (DSC) and scanning electron microscopy (SEM). Acetic acid produced continuous compact surfaces that are not recommended for testing in biomedical applications. The plasticized chitosan-gelatin-ferulic acid blend, using formic acid solvent, produced novel hexagonal porous films with a pore size of around 10-14 µm. This blend is recommended for preparing films (scaffolds) for testing in biomedical applications as it has the advantage of a decreased thickness.

15.
Membranes (Basel) ; 6(2)2016 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-27096873

RESUMO

A major limitation in using membrane-based separation processes is the loss of performance due to membrane fouling. This drawback can be addressed thanks to surface modification treatments. A new and promising surface modification using green chemistry has been recently investigated. This modification is carried out at room temperature and in aqueous medium using green catalyst (enzyme) and nontoxic modifier, which can be safely labelled "green surface modification". This modification can be considered as a nucleus of new generation of antifouling membranes and surfaces. In the current research, ferulic acid modifier and laccase bio-catalyst were used to make poly(ethersulfone) (PES) membrane less vulnerable to protein adsorption. The blank and modified PES membranes are evaluated based on e.g., their flux and protein repellence. Both the blank and the modified PES membranes (or laminated PES on silicon dioxide surface) are characterized using many techniques e.g., SEM, EDX, XPS and SPM, etc. The pure water flux of the most modified membranes was reduced by 10% on average relative to the blank membrane, and around a 94% reduction in protein adsorption was determined. In the conclusions section, a comparison between three modifiers-ferulic acid, and two other previously used modifiers (4-hydroxybenzoic acid and gallic acid)-is presented.

16.
Polymers (Basel) ; 8(8)2016 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-30974579

RESUMO

Surface modification becomes an effective tool for improvement of both flux and selectivity of membrane by reducing the adsorption of the components of the fluid used onto its surface. A successful green modification of poly(ethersulfone) (PES) membranes using ortho-aminophenol (2-AP) modifier and laccase enzyme biocatalyst under very flexible conditions is presented in this paper. The modified PES membranes were evaluated using many techniques including total color change, pure water flux, and protein repellence that were related to the gravimetric grafting yield. In addition, static water contact angle on laminated PES layers were determined. Blank and modified commercial membranes (surface and cross-section) and laminated PES layers (surface) were imaged by scanning electron microscope (SEM) and scanning probe microscope (SPM) to illustrate the formed modifying poly(2-aminophenol) layer(s). This green modification resulted in an improvement of both membrane flux and protein repellence, up to 15.4% and 81.27%, respectively, relative to the blank membrane.

17.
J Colloid Interface Sci ; 378(1): 191-200, 2012 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-22560487

RESUMO

Poly(ethersulfone) (PES) can be modified in a flexible manner using mild, environmentally benign components such as 4-hydroxybenzoic acid and gallic acid, which can be attached to the surface via catalysis by the enzyme laccase. This leads to grafting of mostly linear polymeric chains (for 4-hydroxybenzoic acid, and for gallic acid at low concentration and short modification time) and of networks (for gallic acid at high concentration and long exposure time). The reaction is stopped at a specific time, and the modified surfaces are tested for adsorption of BSA, dextrin and tannin using in-situ reflectometry and AFM imaging. At short modification times, the adsorption of BSA, dextrin and tannin is significantly reduced. However, at longer modification times, the adsorption increases again for both substrates. As the contact angle on modified surfaces at short modification times is reduced (indicative of more hydrophilic surfaces), and keeps the same low values at longer modification times, hydrophilicity is not the only determining factor for the measured differences. At longer modification times, intra-layer reactivity will increase the amount of cross-linking (especially for gallic acid), branching (for 4-hydroxybenzoic acid) and/or collapse of the polymer chains. This leads to more compact layers, which leads to increased protein adsorption. The modifications were shown to have clear potential for reduction of fouling by proteins, polysaccharides, and polyphenols, which could be related to the surface morphology.


Assuntos
Dextrinas/química , Proteínas Fúngicas/química , Lacase/química , Polímeros/química , Soroalbumina Bovina/química , Sulfonas/química , Taninos/química , Adsorção , Animais , Catálise , Bovinos , Ácido Gálico/química , Parabenos/química , Propriedades de Superfície
18.
ACS Appl Mater Interfaces ; 3(3): 801-10, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21344870

RESUMO

Poly(ethersulfone) (PES) membranes are widely used in industry for separation and purification purposes. However, the drawback of this type of membranes is fouling by proteins. For that reason, modification of PES membranes has been studied to enhance their protein repellence. This paper presents the first example of enzyme-catalyzed modification of PES membranes. Various phenolic acids (enzyme substrates) were bound to a membrane under very mild conditions (room temperature, water, nearly neutral pH) using only laccase from Trametes versicolor as catalyst. The extent of modification, monitored, for example, by the coloration of the modified membranes, can be tuned by adjusting the reaction conditions. The most significant results were obtained with 4-hydroxybenzoic acid and gallic acid as substrates. The presence of a covalently bound layer of 4-hydroxybenzoic acid on the grafted membranes was confirmed by X-ray photoelectron spectroscopy (XPS), infrared reflection absorption spectroscopy (IRRAS), and NMR. In the case of gallic acid, PES membrane modification is mainly caused by adsorption of enzymatically formed homopolymer. The ionization potential of the substrates, and the electronic energies and spin densities of the radicals that are intermediates in the attachment reaction were calculated (B3LYP/6-311G(d,p)) to determine the reactive sites and the order of reactivity of radical substrates to couple with the PES membrane. The calculated order of reactivity of the substrates is in line with the experimental observations. The calculated spin densities in the phenolic radicals are highest at the oxygen atom, which is in line with the formation of ether linkages as observed by IRRAS. The liquid fluxes of the modified membranes are hardly influenced by the grafted layers, in spite of the presence of a substantial and stable new layer, which opens a range of application possibilities for these modified membranes.


Assuntos
Lacase/química , Membranas Artificiais , Polímeros/química , Sulfonas/química , Ultrafiltração/métodos , Catálise , Enzimas Imobilizadas/química , Teste de Materiais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA