Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Appl Microbiol Biotechnol ; 101(10): 4185-4200, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28213736

RESUMO

D-Ribulose-5-phosphate-3-epimerase (RPE) and 6-phosphofructokinase (PFK) catalyse two reactions in the ribulose monophosphate (RuMP) cycle in Bacillus methanolicus. The B. methanolicus wild-type strain MGA3 possesses two putative rpe and pfk genes encoded on plasmid pBM19 (rpe1-MGA3 and pfk1-MGA3) and on the chromosome (rpe2-MGA3 and pfk2-MGA3). The wild-type strain PB1 also encodes putative rpe and pfk genes on plasmid pBM20 (rpe1-PB1 and pfk1-PB1*); however, it only harbours a chromosomal pfk gene (pfk2-PB1). Transcription of the plasmid-encoded genes was 10-fold to 15-fold upregulated in cells growing on methanol compared to mannitol, while the chromosomal genes were transcribed at similar levels under both conditions in both strains. All seven gene products were recombinantly produced in Escherichia coli, purified and biochemically characterized. All three RPEs were active as hexamers, catalytically stimulated by Mg2+ and Mn2+ and displayed similar K' values (56-75 µM) for ribulose 5-phosphate. Rpe2-MGA3 showed displayed 2-fold lower V max (49 U/mg) and a significantly reduced thermostability compared to the two Rpe1 proteins. Pfk1-PB1* was shown to be non-functional. The PFKs were active both as octamers and as tetramers, were catalytically stimulated by Mg2+ and Mn2+, and displayed similar thermostabilities. The PFKs have similar K m values for fructose 6-phosphate (0.61-0.94 µM) and for ATP (0.38-0.82 µM), while Pfk1-MGA3 had a 2-fold lower V max (6.3 U/mg) compared to the two Pfk2 proteins. Our results demonstrate that MGA3 and PB1 exert alternative solutions to plasmid-dependent methylotrophy, including genetic organization, regulation, and biochemistry of RuMP cycle enzymes.


Assuntos
Bacillus/enzimologia , Carboidratos Epimerases/genética , Metanol/metabolismo , Fosfofrutoquinase-1/genética , Ribulosefosfatos/metabolismo , Bacillus/genética , Bacillus/metabolismo , Proteínas de Bactérias/genética , Carboidratos Epimerases/biossíntese , Carboidratos Epimerases/metabolismo , Cromossomos Bacterianos , Escherichia coli/genética , Cinética , Manitol/metabolismo , Redes e Vias Metabólicas , Fosfofrutoquinase-1/biossíntese , Fosfofrutoquinase-1/metabolismo , Plasmídeos , Proteínas Recombinantes/biossíntese , Análise de Sequência de DNA
2.
Appl Environ Microbiol ; 79(2): 559-68, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23144128

RESUMO

We previously designed the consensus signal peptide (CSP) and demonstrated that it can be used to strongly stimulate heterologous protein production in Escherichia coli. A comparative study using CSP and two bacterial signal sequences, pelB and ompA, showed that the effect of signal sequences on both expression level and translocation efficiency can be highly protein specific. We report here the generation of CSP mutant libraries by a combinatorial mutagenesis approach. Degenerated CSP oligonucleotides were cloned in frame with the 5' end of the bla gene, encoding the mature periplasmic ß-lactamase released from its native signal sequence. This novel design allows for a direct selection of improved signal sequences that positively affect the expression level and/or translocation efficiency of ß-lactamase, based on the ampicillin tolerance level of the E. coli host cells. By using this strategy, 61 different CSP mutants with up to 8-fold-increased ampicillin tolerance level and up to 5.5-fold-increased ß-lactamase expression level were isolated and characterized genetically. A subset of the CSP mutants was then tested with the alternative reporter gene phoA, encoding periplasmic alkaline phosphatase (AP), resulting in an up to 8-fold-increased production level of active AP protein in E. coli. Moreover, it was demonstrated that the CSP mutants can improve the production of the medically important human interferon α2b under high-cell-density cultivations. Our results show that there is a clear potential for improving bacterial signal sequences by using combinatorial mutagenesis, and bioinformatics analyses indicated that the beneficial mutations could not be rationally predicted.


Assuntos
Escherichia coli/genética , Escherichia coli/metabolismo , Mutagênese , Engenharia de Proteínas/métodos , Sinais Direcionadores de Proteínas , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Resistência a Ampicilina , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Seleção Genética , beta-Lactamases/genética , beta-Lactamases/metabolismo
3.
Appl Environ Microbiol ; 77(17): 6020-6, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21724876

RESUMO

We investigated the regulation and roles of six aspartate pathway genes in L-lysine overproduction in Bacillus methanolicus: dapG, encoding aspartokinase I (AKI); lysC, encoding AKII; yclM, encoding AKIII; asd, encoding aspartate semialdehyde dehydrogenase; dapA, encoding dihydrodipicolinate synthase; and lysA, encoding meso-diaminopimelate decarboxylase. Analysis of the wild-type strain revealed that in vivo lysC transcription was repressed 5-fold by L-lysine and induced 2-fold by dl-methionine added to the growth medium. Surprisingly, yclM transcription was repressed 5-fold by dl-methionine, while the dapG, asd, dapA, and lysA genes were not significantly repressed by any of the aspartate pathway amino acids. We show that the L-lysine-overproducing classical B. methanolicus mutant NOA2#13A52-8A66 has-in addition to a hom-1 mutation-chromosomal mutations in the dapG coding region and in the lysA promoter region. No mutations were found in its dapA, lysC, asd, and yclM genes. The mutant dapG gene product had abolished feedback inhibition by meso-diaminopimelate in vitro, and the lysA mutation was accompanied by an elevated (6-fold) lysA transcription level in vivo. Moreover, yclM transcription was increased 16-fold in mutant strain NOA2#13A52-8A66 compared to the wild-type strain. Overexpression of wild-type and mutant aspartate pathway genes demonstrated that all six genes are important for L-lysine overproduction as tested in shake flasks, and the effects were dependent on the genetic background tested. Coupled overexpression of up to three genes resulted in additive (above 80-fold) increased L-lysine production levels.


Assuntos
Ácido Aspártico/metabolismo , Bacillus/genética , Bacillus/metabolismo , Lisina/biossíntese , Redes e Vias Metabólicas/genética , Metanol/metabolismo , Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica , Mutação , Transcrição Gênica
4.
Front Bioeng Biotechnol ; 9: 686319, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34262896

RESUMO

The use of methanol as carbon source for biotechnological processes has recently attracted great interest due to its relatively low price, high abundance, high purity, and the fact that it is a non-food raw material. In this study, methanol-based production of 5-aminovalerate (5AVA) was established using recombinant Bacillus methanolicus strains. 5AVA is a building block of polyamides and a candidate to become the C5 platform chemical for the production of, among others, δ-valerolactam, 5-hydroxy-valerate, glutarate, and 1,5-pentanediol. In this study, we test five different 5AVA biosynthesis pathways, whereof two directly convert L-lysine to 5AVA and three use cadaverine as an intermediate. The conversion of L-lysine to 5AVA employs lysine 2-monooxygenase (DavB) and 5-aminovaleramidase (DavA), encoded by the well-known Pseudomonas putida cluster davBA, among others, or lysine α-oxidase (RaiP) in the presence of hydrogen peroxide. Cadaverine is converted either to γ-glutamine-cadaverine by glutamine synthetase (SpuI) or to 5-aminopentanal through activity of putrescine oxidase (Puo) or putrescine transaminase (PatA). Our efforts resulted in proof-of-concept 5AVA production from methanol at 50°C, enabled by two pathways out of the five tested with the highest titer of 0.02 g l-1. To our knowledge, this is the first report of 5AVA production from methanol in methylotrophic bacteria, and the recombinant strains and knowledge generated should represent a valuable basis for further improved 5AVA production from methanol.

5.
Appl Microbiol Biotechnol ; 87(3): 951-64, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20372887

RESUMO

We here present the pyc gene encoding pyruvate carboxylase (PC), and the hom-1 and hom-2 genes encoding two active homoserine dehydrogenase (HD) proteins, in methylotrophic Bacillus methanolicus MGA3. In general, both PC and HD are regarded as key targets for improving bacterial L-lysine production; PC plays a role in precursor oxaloacetate (OAA) supply while HD controls an important branch point in the L-lysine biosynthetic pathway. The hom-1 and hom-2 genes were strongly repressed by L-threonine and L-methionine, respectively. Wild-type MGA3 cells secreted 0.4 g/l L-lysine and 59 g/l L-glutamate under optimised fed batch methanol fermentation. The hom-1 mutant M168-20 constructed herein secreted 11 g/l L-lysine and 69 g/l of L-glutamate, while a sixfold higher L-lysine overproduction (65 g/l) of the previously constructed classical B. methanolicus mutant NOA2#13A52-8A66 was accompanied with reduced L-glutamate production (28 g/l) and threefold elevated pyc transcription level. Overproduction of PC and its mutant enzyme P455S in M168-20 had no positive effect on the volumetric L-lysine yield and the L-lysine yield on methanol, and caused significantly reduced volumetric L-glutamate yield and L: -glutamate yield on methanol. Our results demonstrated that hom-1 represents one key target for achieving L-lysine overproduction, PC activity plays an important role in controlling L-glutamate production from methanol, and that OAA precursor supply is not a major bottleneck for L-lysine overproduction by B. methanolicus.


Assuntos
Bacillus/enzimologia , Proteínas de Bactérias/metabolismo , Homosserina Desidrogenase/metabolismo , Lisina/biossíntese , Metanol/metabolismo , Piruvato Carboxilase/metabolismo , Bacillus/genética , Bacillus/metabolismo , Proteínas de Bactérias/genética , Clonagem Molecular , Fermentação , Ácido Glutâmico/metabolismo , Homosserina Desidrogenase/genética , Temperatura Alta , Metionina/metabolismo , Dados de Sequência Molecular , Mutação , Piruvato Carboxilase/genética , Treonina/metabolismo
6.
Front Microbiol ; 11: 680, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32328058

RESUMO

The facultative methylotroph Bacillus methanolicus MGA3 has previously been genetically engineered to overproduce the amino acids L-lysine and L-glutamate and their derivatives cadaverine and γ-aminobutyric acid (GABA) from methanol at 50°C. We here explored the potential of utilizing the sugar alcohol mannitol and seaweed extract (SWE) containing mannitol, as alternative feedstocks for production of chemicals by fermentation using B. methanolicus. Extracts of the brown algae Saccharina latissima harvested in the Trondheim Fjord in Norway were prepared and found to contain 12-13 g/l of mannitol, with conductivities corresponding to a salt content of ∼2% NaCl. Initially, 12 B. methanolicus wild type strains were tested for tolerance to various SWE concentrations, and some strains including MGA3 could grow on 50% SWE medium. Non-methylotrophic and methylotrophic growth of B. methanolicus rely on differences in regulation of metabolic pathways, and we compared production titers of GABA and cadaverine under such growth conditions. Shake flask experiments showed that recombinant MGA3 strains could produce similar and higher titers of cadaverine during growth on 50% SWE and mannitol, compared to on methanol. GABA production levels under these conditions were however low compared to growth on methanol. We present the first fed-batch mannitol fermentation of B. methanolicus and production of 6.3 g/l cadaverine. Finally, we constructed a recombinant MGA3 strain synthesizing the C30 terpenoids 4,4'-diaponeurosporene and 4,4'-diapolycopene, experimentally confirming that B. methanolicus has a functional methylerythritol phosphate (MEP) pathway. Together, our results contribute to extending the range of both the feedstocks for growth and products that can be synthesized by B. methanolicus.

8.
J Biotechnol ; 244: 25-33, 2017 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-28163092

RESUMO

Bacillus methanolicus is a methylotrophic bacterium with an increasing interest in academic research and for biotechnological applications. This bacterium was previously applied for methanol-based production of l-glutamate, l-lysine and the five-carbon diamine cadaverine by wild type, classical mutant and recombinant strains. The genomes of two different l-lysine secreting B. methanolicus classical mutant strains, NOA2#13A52-8A66 and M168-20, were sequenced. We focused on mutational mapping in genes present in l-lysine and other relevant amino acid biosynthetic pathways, as well as in the primary cell metabolism important for precursor supply. In addition to mutations in the aspartate pathway genes dapG, lysA and hom-1, new mutational target genes like alr, proA, proB1, leuC, odhA and pdhD were identified. Surprisingly, no mutations were found in the putative l-lysine transporter gene lysEMGA3. Inspection of the wild type B. methanolicus strain PB1 genome sequence identified two homologous putative l-lysine transporter genes, lysEPB1 and lysE2PB1. The biological role of these putative l-lysine transporter genes, together with the heterologous l-lysine exporter gene lysECg from Corynebacterium glutamicum, were therefore investigated. Our results demonstrated that the titer of secreted l-lysine in B. methanolicus was significantly increased by overexpression of lysECg while overexpression of lysEMGA3, lysEPB1 and lysE2PB1 had no measurable effect.


Assuntos
Bacillus/genética , Proteínas de Bactérias/genética , Análise Mutacional de DNA/métodos , Lisina/biossíntese , Bacillus/metabolismo , Vias Biossintéticas , Simulação por Computador , Genoma Bacteriano , Lisina/genética , Mutação Puntual , Análise de Sequência de DNA/métodos
9.
Front Microbiol ; 7: 1481, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27713731

RESUMO

Bacillus methanolicus is a thermophilic methylotroph able to overproduce amino acids from methanol, a substrate not used for human or animal nutrition. Based on our previous RNA-seq analysis a mannitol inducible promoter and a putative mannitol activator gene mtlR were identified. The mannitol inducible promoter was applied for controlled gene expression using fluorescent reporter proteins and a flow cytometry analysis, and improved by changing the -35 promoter region and by co-expression of the mtlR regulator gene. For independent complementary gene expression control, the heterologous xylose-inducible system from B. megaterium was employed and a two-plasmid gene expression system was developed. Four different replicons for expression vectors were compared with respect to their copy number and stability. As an application example, methanol-based production of cadaverine was shown to be improved from 11.3 to 17.5 g/L when a heterologous lysine decarboxylase gene cadA was expressed from a theta-replicating rather than a rolling-circle replicating vector. The current work on inducible promoter systems and compatible theta- or rolling circle-replicating vectors is an important extension of the poorly developed B. methanolicus genetic toolbox, valuable for genetic engineering and further exploration of this bacterium.

10.
Microb Biotechnol ; 8(2): 342-50, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25644214

RESUMO

Methanol is regarded as an attractive substrate for biotechnological production of value-added bulk products, such as amino acids and polyamines. In the present study, the methylotrophic and thermophilic bacterium Bacillus methanolicus was engineered into a microbial cell factory for the production of the platform chemical 1,5-diaminopentane (cadaverine) from methanol. This was achieved by the heterologous expression of the Escherichia coli genes cadA and ldcC encoding two different lysine decarboxylase enzymes, and by increasing the overall L-lysine production levels in this host. Both CadA and LdcC were functional in B. methanolicus cultivated at 50°C and expression of cadA resulted in cadaverine production levels up to 500 mg l(-1) during shake flask conditions. A volume-corrected concentration of 11.3 g l(-1) of cadaverine was obtained by high-cell density fed-batch methanol fermentation. Our results demonstrated that efficient conversion of L-lysine into cadaverine presumably has severe effects on feedback regulation of the L-lysine biosynthetic pathway in B. methanolicus. By also investigating the cadaverine tolerance level, B. methanolicus proved to be an exciting alternative host and comparable to the well-known bacterial hosts E. coli and Corynebacterium glutamicum. This study represents the first demonstration of microbial production of cadaverine from methanol.


Assuntos
Bacillus/genética , Bacillus/metabolismo , Cadaverina/metabolismo , Engenharia Metabólica , Metanol/metabolismo , Carboxiliases/genética , Carboxiliases/metabolismo , Proteínas de Escherichia coli/genética , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA