Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Infection ; 47(4): 661-664, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31025216

RESUMO

CASE PRESENTATION: We present a case report of a woman, concurrently colonized by polymyxin-resistant E. coli and K. pneumoniae. A Brazilian female patient, in her mid-fifties, was hospitalized with schistosomiasis. During hospitalization, polymyxin-resistant E. coli and K. pneumoniae were isolated from surveillance cultures. METHODS: Identification, antimicrobial susceptibility testings, PCR for mcr-1, plasmid transfer by conjugation and whole genome sequencing were performed. RESULTS: E. coli ST744 and K. pneumoniae ST101 carrying mcr-1 gene were described. Transconjugant E. coli was positive for mcr-1 and IncX4 by PCR. The plasmid is a 33,304-base pair plasmid, and the mcr-1 gene was the only antimicrobial resistance gene present in the plasmid. CONCLUSIONS: This study presents a case report of a hospitalized woman, concurrently colonized by mcr-1-harboring E. coli ST744, a different ST from previously described in Brazil, and a K. pneumoniae ST101.


Assuntos
Proteínas de Bactérias/análise , Farmacorresistência Bacteriana , Infecções por Escherichia coli/diagnóstico , Escherichia coli/genética , Infecções por Klebsiella/diagnóstico , Klebsiella pneumoniae/genética , Antibacterianos/farmacologia , Brasil , Escherichia coli/isolamento & purificação , Proteínas de Escherichia coli/análise , Feminino , Humanos , Klebsiella pneumoniae/isolamento & purificação , Pessoa de Meia-Idade
2.
Microb Genom ; 9(11)2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37966169

RESUMO

Plasmids play important roles in bacterial genome diversification. In the Serratia marcescens complex (SMC), a notable contribution of plasmids to genome diversification was also suggested by our recent analysis of >600 draft genomes. As accurate analyses of plasmids in draft genomes are difficult, in this study we analysed 142 closed genomes covering the entire complex, 67 of which were obtained in this study, and identified 132 plasmids (1.9-244.4 kb in length) in 77 strains. While the average numbers of plasmids in clinical and non-clinical strains showed no significant difference, strains belonging to clade 2 (one of the two hospital-adapted lineages) contained more plasmids than the others. Pangenome analysis revealed that of the 28 954 genes identified, 12.8 % were plasmid-specific, and 1.4 % were present in plasmids or chromosomes depending on the strain. In the latter group, while transposon-related genes were most prevalent (31.4 % of the function-predicted genes), genes related to antimicrobial resistance and heavy metal resistance accounted for a notable proportion (22.7 %). Mash distance-based clustering separated the 132 plasmids into 23 clusters and 50 singletons. Most clusters/singletons showed notably different GC contents compared to those of host chromosomes, suggesting their recent or relatively recent appearance in the SMC. Among the 23 clusters, 17 were found in only clinical or only non-clinical strains, suggesting the possible preference of their distribution on the environmental niches of host strains. Regarding the host strain phylogeny, 16 clusters were distributed in two or more clades, suggesting their interclade transmission. Moreover, for many plasmids, highly homologous plasmids were found in other species, indicating the broadness of their potential host ranges, beyond the genus, family, order, class or even phylum level. Importantly, highly homologous plasmids were most frequently found in Klebsiella pneumoniae and other species in the family Enterobacteriaceae, suggesting that this family, particularly K. pneumoniae, is the main source for plasmid exchanges with the SMC. These results highlight the power of closed genome-based analysis in the investigation of plasmids and provide important insights into the nature of plasmids distributed in the SMC.


Assuntos
Enterobacteriaceae , Serratia marcescens , Serratia marcescens/genética , Plasmídeos/genética , Enterobacteriaceae/genética , Genoma Bacteriano , Klebsiella pneumoniae/genética
3.
Microb Genom ; 8(3)2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35315751

RESUMO

Serratia marcescens is an important nosocomial pathogen causing various opportunistic infections, such as urinary tract infections, bacteremia and sometimes even hospital outbreaks. The recent emergence and spread of multidrug-resistant (MDR) strains further pose serious threats to global public health. This bacterium is also ubiquitously found in natural environments, but the genomic differences between clinical and environmental isolates are not clear, including those between S. marcescens and its close relatives. In this study, we performed a large-scale genome analysis of S. marcescens and closely related species (referred to as the 'S. marcescens complex'), including more than 200 clinical and environmental strains newly sequenced here. Our analysis revealed their phylogenetic relationships and complex global population structure, comprising 14 clades, which were defined based on whole-genome average nucleotide identity. Clades 10, 11, 12 and 13 corresponded to S. nematodiphila, S. marcescens sensu stricto, S. ureilytica and S. surfactantfaciens, respectively. Several clades exhibited distinct genome sizes and GC contents and a negative correlation of these genomic parameters was observed in each clade, which was associated with the acquisition of mobile genetic elements (MGEs), but different types of MGEs, plasmids or prophages (and other integrative elements), were found to contribute to the generation of these genomic variations. Importantly, clades 1 and 2 mostly comprised clinical or hospital environment isolates and accumulated a wide range of antimicrobial resistance genes, including various extended-spectrum ß-lactamase and carbapenemase genes, and fluoroquinolone target site mutations, leading to a high proportion of MDR strains. This finding suggests that clades 1 and 2 represent hospital-adapted lineages in the S. marcescens complex although their potential virulence is currently unknown. These data provide an important genomic basis for reconsidering the classification of this group of bacteria and reveal novel insights into their evolution, biology and differential importance in clinical settings.


Assuntos
Bacteriemia , Serratia marcescens , Hospitais , Humanos , Filogenia , Plasmídeos , Serratia marcescens/genética
4.
Artigo em Inglês | MEDLINE | ID: mdl-34878040

RESUMO

The methicillin resistant Staphylococcus aureus (MRSA) is recognized by its ability to acquire and transferring resistance genes through interspecies conjugative plasmids. However, transference of plasmids from Gram-positive cocci to Gram-negative bacilli is not well characterized. In this report, we describe the transfer of a conjugative plasmid carrying qacA from MRSA to Escherichia coli C600. We performed a conjugation experiment using a chlorhexidine resistant MRSA isolate (ST-105/SCCmec type III) carrying the gene qacA and qacC as the donor and a chlorhexidine susceptible E. coli C600 isolate as the receptor. Transconjugants were selected using MacConkey agar plates containing chlorhexidine in concentrations ranging from 0.25 to 16 g.L-1. To genotypically confirm the transfer of the resistance gene, the transconjugants were screened by Polymerase Chain Reaction (PCR) and submitted to Sanger's sequencing. MRSA isolates successfully transferred the chlorhexidine resistance gene (qacA) to the recipient E. coli strain C600. The E. coli transconjugant exhibited an important reduction of chlorhexidine susceptibility, with MICs increasing from ≤ 0.25 to ≥ 16 g.L-1 after conjugation. The qacA gene was detected by PCR as well as in the Sanger's sequencing analysis of DNA from transconjugant plasmids. To the best of our knowledge, this is the first report of the plasmid p_8N_qac(MN687830.1) carrying qacA and its transfer by conjugation from a MRSA to an E. coli. These findings increase concerns on the emergence of resistance dissemination across the genus and emphasizes the importance of continuous antiseptic stewardship.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Clorexidina/farmacologia , Escherichia coli/genética , Humanos , Proteínas de Membrana Transportadoras/genética , Staphylococcus aureus Resistente à Meticilina/genética , Testes de Sensibilidade Microbiana , Plasmídeos/genética , Staphylococcus aureus/genética
5.
Artigo em Inglês | MEDLINE | ID: mdl-33852710

RESUMO

Despite the widespread use of chlorhexidine (CHX) to prevent infection, data regarding the in vitro action of CHX against methicillin-resistant Staphylococcus aureus (MRSA) are limited. Clinical isolates from Hospital das Clinicas, Sao Paulo, Brazil, identified during 2002/2003 and 2012/2013 were studied to describe the susceptibility to CHX and mupirocin, molecular characteristics, and virulence profile of MRSA. Susceptibility test to Mupirocin was performed by the disk diffusion method and to CHX by the agar dilution technique. PCR for virulence genes, mecA gene and Staphylococcal Cassette Chromosome mec (SCCmec) types were investigated as well. Mupirocin- and CHX-resistant isolates were sequenced using the IlluminaTM plataform. Two hundred and sixteen MRSA clinical isolates were evaluated: 154 from infected and 62 from colonized patients. Resistance to mupirocin was observed in four isolates assigned as SCCmec type III and STs (ST05; ST239 and ST105) carrying mupA and blaZ, two of them co-harboring the ileS gene. Only one isolate assigned as SCCmec type III was resistant to CHX (MIC of 8.0 µg.mL-1) and harbored the qacA gene. Resistance to chlorhexidine and mupirocin were found in isolates carrying qacA and mupA in our hospital. Since these genes are plasmid-mediated, this finding draws attention to the potential spread of resistance to mupirocin in our hospital.


Assuntos
Antibacterianos/farmacologia , Clorexidina/farmacologia , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/isolamento & purificação , Mupirocina/farmacologia , Infecções Estafilocócicas/tratamento farmacológico , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Proteínas de Bactérias/genética , Brasil , Criança , Pré-Escolar , DNA Bacteriano/genética , Feminino , Hospitais de Ensino , Humanos , Lactente , Masculino , Staphylococcus aureus Resistente à Meticilina/genética , Testes de Sensibilidade Microbiana , Pessoa de Meia-Idade , Análise de Sequência de DNA , Infecções Estafilocócicas/epidemiologia , Infecções Estafilocócicas/microbiologia , Virulência , Adulto Jovem
6.
Artigo em Inglês | MEDLINE | ID: mdl-33909852

RESUMO

The plasmid-mediated colistin-resistance gene named mcr-1 has been recently described in different countries and it became a public health challenge. Of note, few studies have addressed the spread of Escherichia coli harboring the mcr-1 gene in both, community and hospital settings. A total of seven colistin-resistant E. coli carrying mcr-1, collected from 2016 to 2018, from community (n=4), healthcare-acquired infections (n=2) and colonization (n=1) were identified in three high complexity hospitals in Sao Paulo, Brazil. These colistin-resistant isolates were screened for mcr genes by PCR and all strains were submitted to Whole Genome Sequencing and the conjugation experiment. The seven strains belonged to seven distinct sequence types (ST744, ST131, ST69, ST48, ST354, ST57, ST10), and they differ regarding the resistance profiles. Transference of mcr-1 by conjugation to E. coli strain C600 was possible in five of the seven isolates. The mcr-1 gene was found in plasmid types IncX4 or IncI2. Three of the isolates have ESBL-encoding genes (blaCTX-M-2, n=2; blaCTX-M-8, n=1). We hereby report genetically distinct E. coli isolates, belonging to seven STs, harboring the mcr-1 gene, associated to community and healthcare-acquired infections, and colonization in patients from three hospitals in Sao Paulo. These findings point out for the potential spread of plasmid-mediated colistin-resistance mechanism in E. coli strains in Brazil.


Assuntos
Colistina , Proteínas de Escherichia coli , Antibacterianos/farmacologia , Brasil , Colistina/farmacologia , Atenção à Saúde , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Humanos , Testes de Sensibilidade Microbiana
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA