Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Biochem Biophys Res Commun ; 417(1): 462-7, 2012 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-22172944

RESUMO

Cell adhesion molecule 1 (CADM1) is a type I transmembrane glycoprotein expressed in various tissues. CADM1 is a cell adhesion molecule with many functions, including roles in tumor suppression, apoptosis, mast cell survival, synapse formation, and spermatogenesis. CADM1 undergoes membrane-proximal cleavage called shedding, but the sheddase and mechanisms of CADM1 proteolysis have not been reported. We determined the cleavage site involved in CADM1 shedding by LC/MS/MS and showed that CADM1 shedding occurred in the membrane fraction and was inhibited by tumor necrosis factor-α protease inhibitor-1 (TAPI-1). An siRNA experiment revealed that ADAM10 mediates endogenous CADM1 shedding. In addition, the membrane-bound fragment generated by shedding was further cleaved by γ-secretase and generated CADM1-intracellular domain (ICD) in a mechanism called regulated intramembrane proteolysis (RIP). These results clarify the detailed mechanism of membrane-proximal cleavage of CADM1, suggesting the possibility of RIP-mediated CADM1 signaling.


Assuntos
Secretases da Proteína Precursora do Amiloide/metabolismo , Moléculas de Adesão Celular/metabolismo , Desintegrinas/metabolismo , Imunoglobulinas/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Proteínas ADAM/genética , Proteínas ADAM/metabolismo , Proteína ADAM10 , Sequência de Aminoácidos , Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Secretases da Proteína Precursora do Amiloide/genética , Animais , Células COS , Molécula 1 de Adesão Celular , Moléculas de Adesão Celular/genética , Técnicas de Inativação de Genes , Células HEK293 , Humanos , Imunoglobulinas/genética , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Dados de Sequência Molecular , Células NIH 3T3 , Ésteres de Forbol/farmacologia , Inibidores de Proteases/farmacologia
2.
ISME J ; 16(6): 1502-1511, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35115640

RESUMO

Prediction of individualized responses is one of biggest challenges in dietary intervention to modulate human gut microbiota. Bacterial interspecies competition for dietary factors should underlie the inter-subject heterogeneity of microbial responses. Microscale localization of bacterial species around intestinal food structures could provide direct evidence for understanding this, however, little information is currently available. Here we analyzed human fecal sections and found multiple types of bacterial colonization of food structures. The most eminent one was dense and frequent colonization of starch granules by Bifidobacterium adolescentis. After intake of raw potato starch (pSt), B. adolescentis dramatically increased in every carrier of the species, accompanied by an increase in bifidobacterial metabolite acetate. In the other subjects, Eubacterium rectale and its metabolite butyrate increased, but it was suppressed in B. adolescentis carriers. A correlation analysis indicated the contribution of these species to respective metabolites. In vitro analyses of isolates of major gut bacterial species confirmed that these species are major colonizers of pSt and that B. adolescentis can colonize pSt even in the presence of the known starch granule-degrading bacterium Ruminococcus bromii. Collectively, we propose that specific binding of B. adolescentis or E. rectale to pSt selectively induces acetogenic or butyrogenic response of gut microbiota, where the former determines the response of the latter.


Assuntos
Microbioma Gastrointestinal , Bactérias , Bifidobacterium/metabolismo , Fezes/microbiologia , Microbioma Gastrointestinal/fisiologia , Humanos , Amido/metabolismo
3.
Sci Rep ; 12(1): 3593, 2022 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-35246580

RESUMO

Gut microbiomics is based on analysis of both live and dead cells in the stool. However, to understand the ecology of gut microbiota and their symbiotic relationships with hosts, spatial distribution of live bacteria must be examined. Here, we analyzed the live composition of luminal microbiota (LM) and mucosa-associated microbiota (MAM) in the ascending and descending colons and the rectums of 10 healthy adults and compared it with the total composition. The abundance of Lachnospiraceae in live LM decreased along the gut length and was significantly lower than that in total LM. Contrastingly, the abundance of Bacteroidaceae and Bifidobacteriaceae in live LM was higher than that in total LM, suggesting differences in death rate during gut migration. Live Enterobacteriaceae levels in MAM were significantly higher in rectum than in the ascending and descending colons and in LM. High-performance liquid chromatographic analysis of luminal bile acids revealed that 7α-dehydroxylation occurred towards the rectum. In live LM where a bile acid-inducible gene could be detected, 7α-dehydroxylation rates were higher than those in the group without the gene. Overall, we showed differences in live bacteria composition among three gut sites and between LM and MAM, highlighting the importance of understanding their spatial distribution.


Assuntos
Microbioma Gastrointestinal , Microbiota , Adulto , Bactérias/genética , Ácidos e Sais Biliares , Humanos , Intestino Grosso
4.
Gut Microbes ; 11(6): 1662-1676, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32552401

RESUMO

Probiotic products have been shown to have beneficial effects on human hosts, but what happens in the gastrointestinal tract after its ingestion remains unclear. Our aim was to investigate the changes within the small intestines after a single intake of a fermented milk product containing a probiotic. We have periodically collected the small-intestinal fluids from the terminal ileum of seven healthy subjects for up to 7 h after ingestion by small-intestinal fluid perfusion using an endoscopic retrograde bowel insertion technique. The bacterial composition of the terminal ileum clearly revealed that the ingested probiotics (Lactobacillus casei strain Shirota: LcS and Bifidobacterium breve strain Yakult: BbrY) occupied the ileal microbiota for several hours, temporarily representing over 90% of the ileal microbiota in several subjects. Cultivation of ileal fluids showed that under a dramatic pH changes before reaching the terminal ileum, a certain number of the ingested bacteria survived (8.2 ± 6.4% of LcS, 7.8 ± 11.0% of BbrY). This means that more than 1 billion LcS and BbrY cells reached the terminal ileum with their colony-forming ability intact. These results indicate that there is adequate opportunity for the ingested probiotics to continuously stimulate the host cells in the small intestines. Our data suggest that probiotic fermented milk intake affects intestinal microbes and the host, explaining part of the process from the intake of probiotics to the exertion of their beneficial effects on the host.


Assuntos
Bactérias/isolamento & purificação , Líquidos Corporais/microbiologia , Produtos Fermentados do Leite/microbiologia , Microbioma Gastrointestinal , Intestino Delgado/microbiologia , Adulto , Animais , Bactérias/classificação , Bactérias/genética , Bactérias/crescimento & desenvolvimento , Líquidos Corporais/diagnóstico por imagem , Bovinos , Produtos Fermentados do Leite/análise , Endoscópios , Humanos , Intestino Delgado/diagnóstico por imagem , Intestino Delgado/metabolismo , Masculino , Viabilidade Microbiana , Pessoa de Meia-Idade , Probióticos/metabolismo , Adulto Jovem
5.
PLoS One ; 12(4): e0175497, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28394924

RESUMO

Each species of intestinal bacteria requires a nutritional source to maintain its population in the intestine. Dietary factors are considered to be major nutrients; however, evidence directly explaining the in situ utilization of dietary factors is limited. Microscale bacterial distribution would provide clues to understand bacterial lifestyle and nutrient utilization. However, the detailed bacterial localization around dietary factors in the intestine remains uninvestigated. Therefore, we explored microscale habitats in the murine intestine by using histology and fluorescent in situ hybridization, focusing on dietary factors. This approach successfully revealed several types of bacterial colonization. In particular, bifidobacterial colonization and adhesion on granular starch was frequently and commonly observed in the jejunum and distal colon. To identify the bacterial composition of areas around starch granules and areas without starch, laser microdissection and next-generation sequencing-based 16S rRNA microbial profiling was performed. It was found that Bifidobacteriaceae were significantly enriched by 4.7 fold in peri-starch areas compared to ex-starch areas. This family solely consisted of Bifidobacterium pseudolongum. In contrast, there was no significant enrichment among the other major families. This murine intestinal B. pseudolongum had starch-degrading activity, confirmed by isolation from the mouse feces and in vitro analysis. Collectively, our results demonstrate the significance of starch granules as a major habitat and potential nutritional niche for murine intestinal B. pseudolongum. Moreover, our results suggest that colonizing bifidobacteria effectively utilize starch from the closest location and maintain the location. This may be a bacterial strategy to monopolize solid dietary nutrients. We believe that our analytical approach could possibly be applied to other nutritional factors, and can be a powerful tool to investigate in vivo relationships between bacteria and environmental factors in the intestine.


Assuntos
Aderência Bacteriana , Bifidobacterium/fisiologia , Mucosa Intestinal/metabolismo , Intestinos/microbiologia , Amido/metabolismo , Animais , Bifidobacterium/citologia , Bifidobacterium/genética , Bifidobacterium/isolamento & purificação , Fezes/microbiologia , Alimentos , Microbioma Gastrointestinal/genética , Microbioma Gastrointestinal/fisiologia , Hibridização in Situ Fluorescente , Camundongos Endogâmicos C57BL , Microdissecção , RNA Ribossômico 16S/genética , Análise Espacial
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA