Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Biomol Struct Dyn ; 40(9): 4164-4187, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-33292066

RESUMO

The olfactory system is capable of detecting and distinguishing thousands of environmental odorants that play a key role in reproduction, social behaviours including pheromones influenced classical events. Membrane secretary odorant binding proteins (OBPs) are soluble lipocalins, localized in the nasal membrane of mammals. They bind and carry odorants within the nasal epithelium to putative olfactory transmembrane receptors (ORs). OBP has not yet been exploited to develop a suitable technique to detect oestrus which is being reported as a difficult task in buffalo. In the present study, using molecular biology and protein engineering approaches, we have cloned six novel OBP isoforms from buffalo nasal epithelium odorant-binding proteins (bnOBPs). Furthermore, 3 D models were developed and molecular-docking, dynamics experiments were performed by in silico approaches. In particular, we found four residues (Phe104, Phe134, Phe69 and Asn118) in OBP1a, which contributed to favourable interactions towards two sex pheromones, specifically oleic acid and p-cresol. We expressed this protein in Escherichia coli from female buffalo urine and validated through fluorescence quenching studies to show similar strong binding affinities of OBP1a to oleic acid and p-cresol. By using structural data, the binding specificity was also verified by site-directed mutagenesis of the four residues followed by in vitro binding assays. Our results enable us to better understand the functions of different nasal epithelium OBP isoforms in buffaloes. They also lead to improved understanding of the interaction between olfactory proteins and odorants to develop highly selective biosensing devices for non-invasive detection of oestrus in buffaloes. Communicated by Ramaswamy H. Sarma.


Assuntos
Búfalos , Receptores Odorantes , Animais , Búfalos/metabolismo , Feminino , Simulação de Acoplamento Molecular , Odorantes , Ácido Oleico , Isoformas de Proteínas , Receptores Odorantes/química , Receptores Odorantes/genética , Receptores Odorantes/metabolismo
2.
Bioinform Biol Insights ; 8: 147-58, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25002814

RESUMO

Olfaction is the response to odors and is mediated by a class of membrane-bound proteins called olfactory receptors (ORs). An understanding of these receptors serves as a good model for basic signal transduction mechanisms and also provides important clues for the strategies adopted by organisms for their ultimate survival using chemosensory perception in search of food or defense against predators. Prior research on cross-genome phylogenetic analyses from our group motivated the addressal of conserved evolutionary trends, clustering, and ortholog prediction of ORs. The database of olfactory receptors (DOR) is a repository that provides sequence and structural information on ORs of selected organisms (such as Saccharomyces cerevisiae, Drosophila melanogaster, Caenorhabditis elegans, Mus musculus, and Homo sapiens). Users can download OR sequences, study predicted membrane topology, and obtain cross-genome sequence alignments and phylogeny, including three-dimensional (3D) structural models of 100 selected ORs and their predicted dimer interfaces. The database can be accessed from http://caps.ncbs.res.in/DOR. Such a database should be helpful in designing experiments on point mutations to probe into the possible dimerization modes of ORs and to even understand the evolutionary changes between different receptors.

3.
Evol Bioinform Online ; 8: 229-59, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22807621

RESUMO

G-protein coupled receptors (GPCRs) are one of the largest groups of membrane proteins and are popular drug targets. The work reported here attempts to perform cross-genome phylogeny on GPCRs from two widely different taxa, human versus C. elegans genomes and to address the issues on evolutionary plasticity, to identify functionally related genes, orthologous relationship, and ligand binding properties through effective bioinformatic approaches. Through RPS blast around 1106 nematode GPCRs were given chance to associate with previously established 8 types of human GPCR profiles at varying E-value thresholds and resulted 32 clusters were illustrating co-clustering and class-specific retainsionship. In the significant thresholds, 81% of the C. elegans GPCRs were associated with 32 clusters and 27 C. elegans GPCRs (2%) inferred for orthology. 177 hypothetical proteins were observed in cluster association and could be reliably associated with one of 32 clusters. Several nematode-specific GPCR clades were observed suggesting lineage-specific functional recruitment in response to environment.

4.
Bioinformation ; 7(1): 15-20, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21904433

RESUMO

G-protein coupled receptors (GPCRs) belong to biologically important and functionally diverse and largest super family of membrane proteins. GPCRs retain a characteristic membrane topology of seven alpha helices with three intracellular, three extracellular loops and flanking N' and C' terminal residues. Subtle differences do exist in the helix boundaries (TM-domain), loop lengths, sequence features such as conserved motifs, and substituting amino acid patterns and their physiochemical properties amongst these sequences (clusters) at intra-genomic and inter-genomic level (please re-phrase into 2 statements for clarity). In the current study, we employ prediction of helix boundaries and scores derived from amino acid substitution exchange matrices to identify the conserved amino acid residues (motifs) as consensus in aligned set of homologous GPCR sequences. Co-clustered GPCRs from human and other genomes, organized as 32 clusters, were employed to study the amino acid conservation patterns and species-specific or cluster-specific motifs. Critical analysis on sequence composition and properties provide clues to connect functional relevance within and across genome for vast practical applications such as design of mutations and understanding of disease-causing genetic abnormalities.

5.
Bioinformation ; 7(5): 214-21, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22125389

RESUMO

UNLABELLED: Multiple sequence alignments become biologically meaningful only if conserved and functionally important residues and secondary structural elements preserved can be identified at equivalent positions. This is particularly important for transmembrane proteins like G-protein coupled receptors (GPCRs) with seven transmembrane helices. TM-MOTIF is a software package and an effective alignment viewer to identify and display conserved motifs and amino acid substitutions (AAS) at each position of the aligned set of homologous sequences of GPCRs. The key feature of the package is to display the predicted membrane topology for seven transmembrane helices in seven colours (VIBGYOR colouring scheme) and to map the identified motifs on its respective helices /loop regions. It is an interactive package which provides options to the user to submit query or pre-aligned set of GPCR sequences to align with a reference sequence, like rhodopsin, whose structure has been solved experimentally. It also provides the possibility to identify the nearest homologue from the available inbuilt GPCR or Olfactory Receptor cluster dataset whose association is already known for its receptor type. AVAILABILITY: The database is available for free at mini@ncbs.res.in.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA