Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cryst Growth Des ; 24(8): 3205-3217, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38659664

RESUMO

The formulation of active pharmaceutical ingredients involves discovering stable crystal packing arrangements or polymorphs, each of which has distinct pharmaceutically relevant properties. Traditional experimental screening techniques utilizing various conditions are commonly supplemented with in silico crystal structure prediction (CSP) to inform the crystallization process and mitigate risk. Predictions are often based on advanced classical force fields or quantum mechanical calculations that model the crystal potential energy landscape but do not fully incorporate temperature, pressure, or solution conditions during the search procedure. This study proposes an innovative alchemical path that utilizes an advanced polarizable atomic multipole force field to predict crystal structures based on direct sampling of the NPT ensemble. The use of alchemical (i.e., nonphysical) intermediates, a novel Monte Carlo barostat, and an orthogonal space tempering bias combine to enhance the sampling efficiency of the deposition/sublimation phase transition. The proposed algorithm was applied to 2-((4-(2-(3,4-dichlorophenyl)ethyl)phenyl)amino)benzoic acid (Cambridge Crystallography Database Centre ID: XAFPAY) as a case study to showcase the algorithm. Each experimentally determined polymorph with one molecule in the asymmetric unit was successfully reproduced via approximately 1000 short 1 ns simulations per space group where each simulation was initiated from random rigid body coordinates and unit cell parameters. Utilizing two threads of a recent Intel CPU (a Xeon Gold 6330 CPU at 2.00 GHz), 1 ns of sampling using the polarizable AMOEBA force field can be acquired in 4 h (equating to more than 300 ns/day using all 112 threads/56 cores of a dual CPU node) within the Force Field X software (https://ffx.biochem.uiowa.edu). These results demonstrate a step forward in the rigorous use of the NPT ensemble during the CSP search process and open the door to future algorithms that incorporate solution conditions using continuum solvation methods.

2.
J Appl Crystallogr ; 55(Pt 6): 1528-1537, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36570662

RESUMO

During in silico crystal structure prediction of organic molecules, millions of candidate structures are often generated. These candidates must be compared to remove duplicates prior to further analysis (e.g. optimization with electronic structure methods) and ultimately compared with structures determined experimentally. The agreement of predicted and experimental structures forms the basis of evaluating the results from the Cambridge Crystallographic Data Centre (CCDC) blind assessment of crystal structure prediction, which further motivates the pursuit of rigorous alignments. Evaluating crystal structure packings using coordinate root-mean-square deviation (RMSD) for N molecules (or N asymmetric units) in a reproducible manner requires metrics to describe the shape of the compared molecular clusters to account for alternative approaches used to prioritize selection of molecules. Described here is a flexible algorithm called Progressive Alignment of Crystals (PAC) to evaluate crystal packing similarity using coordinate RMSD and introducing the radius of gyration (R g) as a metric to quantify the shape of the superimposed clusters. It is shown that the absence of metrics to describe cluster shape adds ambiguity to the results of the CCDC blind assessments because it is not possible to determine whether the superposition algorithm has prioritized tightly packed molecular clusters (i.e. to minimize R g) or prioritized reduced RMSD (i.e. via possibly elongated clusters with relatively larger R g). For example, it is shown that when the PAC algorithm described here uses single linkage to prioritize molecules for inclusion in the superimposed clusters, the results are nearly identical to those calculated by the widely used program COMPACK. However, the lower R g values obtained by the use of average linkage are favored for molecule prioritization because the resulting RMSDs more equally reflect the importance of packing along each dimension. It is shown that the PAC algorithm is faster than COMPACK when using a single process and its utility for biomolecular crystals is demonstrated. Finally, parallel scaling up to 64 processes in the open-source code Force Field X is presented.

3.
Chirality ; 20(7): 820-7, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18306294

RESUMO

(+)-18-crown-6 tetracarboxylic acid (18C6H(4)) has been used as a chiral selector for various amines and amino acids. To further clarify the structural scaffold of 18C6H(4) for chiral separation, single crystal X-ray analysis of its glycine(+) (1), H3O+ (2), H5O2+ (3), NH4+ (4), and 2CH3NH3+ (5) complexes was performed and the guest-dependent conformation of 18C6H(4) was investigated. The crown ether ring of 18C6H4 in 3, 4, and 5 took a symmetrical C2 or C2-like conformation, whereas that in 1 and 2 took an asymmetric C1 conformation, which is commonly observed in complexes with various optically active amino acids. The overall survey of the present and related complexes suggests that the molecular conformation of 18C6H4 is freely changeable within an allowable range, depending on the molecular shape and interaction mode with the cationic guest. On the basis of the present results, we propose the allowable conformational variation of 18C6H4 and a possible transition pathway from its primary conformation to the conformation suitable for chiral separation of racemic amines and amino acids.


Assuntos
Aminoácidos/química , Aminoácidos/isolamento & purificação , Éteres de Coroa/química , Cromatografia Líquida de Alta Pressão/métodos , Cristalografia por Raios X , Eletroforese Capilar/métodos , Ligação de Hidrogênio , Indicadores e Reagentes , Modelos Moleculares , Conformação Molecular , Eletricidade Estática , Estereoisomerismo
4.
Chem Pharm Bull (Tokyo) ; 54(4): 452-7, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16595944

RESUMO

(+)-18-crown-6 tetracarboxylic acid (18C6H4) has been used as a chiral selector for D/L-amino acids in HPLC, where L-isomer is usually eluted prior to D-isomer, except for the case of serine. To clarify why serine exhibits the reverse order for the elusion, the chiral interactions of D- and L-serines with (+)-18C6H4 were investigated by the X-ray single crystal analyses, together with the case of D- and L-glutamic acids, which exhibit the usual elution order in HPLC. The backbone structures (amino, Calpha-H and carboxyl groups) of these four amino acids showed the nearly same interaction with (+)-18C6H4 despite their different chirality. In contrast, the hydroxyl group of L-serine side chain formed a hydrogen bond with the carboxyl group of (+)-18C6H4, whereas such a interaction was not formed for the side chain of D-serine and D- and L-glutamic acids. Thus, it was shown that the exception of D/L-serine from the first elution rule of L-isomer in HPLC is due to the presence and absence of a hydrogen bond formation of its side chain OH group.


Assuntos
Aminoácidos/química , Éteres de Coroa/química , Ácido Glutâmico/química , Serina/química , Cromatografia Líquida de Alta Pressão , Cristalografia por Raios X , Isomerismo , Estrutura Molecular
5.
Org Biomol Chem ; 2(23): 3470-5, 2004 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-15565239

RESUMO

To clarify the structural scaffold of (+)-18-crown-6 tetracarboxylic acid ((+)-18C6H4) for the optical resolution of a chiral amino acid, the crystal structures of its equimolar complexes with L- and D-isomers of tyrosine (Tyr), isoleucine (Ile), methionine (Met) and phenylglycine (PheG) were analysed by X-ray diffraction methods. (+)-18C6H4 took very similar conformations for all complexes. Although the chemical structure of (+)-18C6H4 is C2-symmetric, it took a similar asymmetric ring conformation of radius ca. 6.0 A. In all complexes, the amino group of chiral amino acids was located near the center of the ring and formed three hydrogen bonds and five electrostatic interactions with eight oxygen atoms of the ether ring and carboxyl groups. Also, the Calpha atom of chiral amino acids participated in Calpha-H...O interaction with the oxygen atom of (+)-18C6H4. In contrast, the carboxyl group of chiral amino acids did not directly interact with (+)-18C6H4. These results indicate that the structural scaffold of (+)-18C6H4 for the optical resolution of chiral amino acids is mainly based on the mode of interaction of (+)-18C6H4 with the amino and Calpha-H groups of chiral amino acids. The differences in interaction pattern and binding energy between the L- and D-isomers of each amino acid are discussed in relation to the chiral recognition of (+)-18C6H4.


Assuntos
Aminoácidos/química , Éteres de Coroa/química , Glicina/análogos & derivados , Glicina/química , Cromatografia Líquida de Alta Pressão , Cristalografia por Raios X , Ligação de Hidrogênio , Isoleucina/química , Isomerismo , Metionina/química , Modelos Químicos , Conformação Molecular , Estrutura Molecular , Termodinâmica , Tirosina/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA