Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Drug Metab Dispos ; 51(12): 1551-1560, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37751997

RESUMO

Pharmaceutical companies subject all new molecular entities to a series of in vitro metabolic characterizations that guide the selection and/or design of compounds predicted to have favorable pharmacokinetic properties in humans. Current drug metabolism research is based on liver tissue predominantly obtained from people of European origin, with limited access to tissue from people of African origin. Given the interindividual and interpopulation genomic variability in genes encoding drug-metabolizing enzymes, efficacy and safety of some drugs are poorly predicted for African populations. To address this gap, we have established the first comprehensive liver tissue biorepository inclusive of people of African origin. The African Liver Tissue Biorepository Consortium currently includes three institutions in South Africa and one in Zimbabwe, with plans to expand to other African countries. The program has collected 67 liver samples as of July 2023. DNA from the donors was genotyped for 120 variants in 46 pharmacogenes and revealed variants that are uniquely found in African populations, including the low-activity, African-specific CYP2C9*5 and *8 variants relevant to the metabolism of diclofenac. Larger liver tissue samples were used to isolate primary human hepatocytes. Viability of the hepatocytes and microsomal fractions was demonstrated by the activity of selected cytochrome P450s. This resource will be used to ensure the safety and efficacy of existing and new drugs in African populations. This will be done by characterizing compounds for properties such as drug clearance, metabolite and enzyme identification, and drug-drug and drug-gene interactions. SIGNIFICANCE STATEMENT: Standard optimization of the drug metabolism of new molecular entities in the pharmaceutical industry uses subcellular fractions such as microsomes and isolated primary hepatocytes, being done mainly with tissue from donors of European origin. Pharmacogenetics research has shown that variants in genes coding for drug-metabolizing enzymes have interindividual and interpopulation differences. We established an African liver tissue biorepository that will be useful in ensuring drug discovery and development research takes into account drug responses in people of African origin.


Assuntos
Sistema Enzimático do Citocromo P-450 , Farmacogenética , Humanos , Sistema Enzimático do Citocromo P-450/metabolismo , Fígado/metabolismo , Taxa de Depuração Metabólica , Descoberta de Drogas
2.
Biochem Soc Trans ; 45(4): 953-62, 2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28687714

RESUMO

Termed 'master gene regulators' long ncRNAs (lncRNAs) have emerged as the true vanguard of the 'noncoding revolution'. Functioning at a molecular level, in most if not all cellular processes, lncRNAs exert their effects systemically. Thus, it is not surprising that lncRNAs have emerged as important players in human pathophysiology. As our body's first line of defense upon infection or injury, inflammation has been implicated in the etiology of several human diseases. At the center of the acute inflammatory response, as well as several pathologies, is the pleiotropic transcription factor NF-κß. In this review, we attempt to capture a summary of lncRNAs directly involved in regulating innate immunity at various arms of the NF-κß pathway that have also been validated in human disease. We also highlight the fundamental concepts required as lncRNAs enter a new era of diagnostic and therapeutic significance.


Assuntos
Doença Crônica , Regulação da Expressão Gênica no Desenvolvimento , Imunidade Inata , Modelos Imunológicos , RNA Longo não Codificante/metabolismo , Transdução de Sinais , Animais , Predisposição Genética para Doença , Humanos , Mediadores da Inflamação/agonistas , Mediadores da Inflamação/metabolismo , NF-kappa B/agonistas , NF-kappa B/genética , NF-kappa B/metabolismo , Polimorfismo de Nucleotídeo Único , RNA Longo não Codificante/genética
3.
Exp Cell Res ; 322(2): 381-8, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-24472616

RESUMO

Correct formation of the corneal endothelium is essential for continued development of the anterior segment of the eye. Corneal endothelial development is initiated at E12 when precursor peri-ocular mesenchyme cells migrate into the space between the lens and the presumptive corneal epithelium and begin to respond to signals from the lens, undergoing a mesenchymal to epithelial transition (MET) that is complete by E15.5. To study the initiation of MET, peri-ocular mesenchyme cell lines were derived from E12.5 and E13.5 murine embryos. These cells expressed key transcription factors, Foxc1 and Pitx2, as well as Slug and Tsc22, genes involved in MET. We have shown that all these genes must be down-regulated by E13.5 for differentiation to proceed. Lens-derived signals play a role in this down-regulation with Tgfß2 specifically down-regulating Foxc1 and Pitx2. Over-expression and knock-down of Foxc1 significantly and similarly affected the expression of Pitx2, Tsc22 and Slug while Foxc1 was shown to play a role in mediating the lens effects on Slug. Thus, for the progression of initial corneal endothelial development, the key transcription factors, Foxc1 and Pitx2, as well as genes involved in MET, Slug and Tsc-22, must be down-regulated, a process driven by the lens and Foxc1.


Assuntos
Diferenciação Celular , Endotélio Corneano/citologia , Endotélio Corneano/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Cristalino/citologia , Cristalino/metabolismo , Animais , Western Blotting , Células Cultivadas , Galinhas , Embrião de Mamíferos/citologia , Embrião de Mamíferos/metabolismo , Transição Epitelial-Mesenquimal , Fatores de Transcrição Forkhead/genética , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Mesoderma/citologia , Mesoderma/metabolismo , Camundongos , Proteínas Proto-Oncogênicas c-met/genética , Proteínas Proto-Oncogênicas c-met/metabolismo , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Transcrição da Família Snail , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Fator de Crescimento Transformador beta2/genética , Fator de Crescimento Transformador beta2/metabolismo , Proteína Homeobox PITX2
4.
J Pers Med ; 14(1)2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38276236

RESUMO

Lack of equitable representation of global genetic diversity has hampered the implementation of genomic medicine in under-represented populations, including those on the African continent. Data from the multi-national Pre-emptive Pharmacogenomic Testing for Preventing Adverse Drug Reactions (PREPARE) study suggest that genotype guidance for prescriptions reduced the incidence of clinically relevant adverse drug reactions (ADRs) by 30%. In this study, hospital dispensary trends from a tertiary South African (SA) hospital (Steve Biko Academic Hospital; SBAH) were compared with the drugs monitored in the PREPARE study. Dispensary data on 29 drugs from the PREPARE study accounted for ~10% of total prescriptions and ~9% of the total expenditure at SBAH. VigiLyze data from the South African Health Products Regulatory Authority were interrogated for local ADRs related to these drugs; 27 were listed as being suspected, concomitant, or interacting in ADR reports. Furthermore, a comparison of pharmacogene allele frequencies between African and European populations was used to frame the potential impact of pre-emptive pharmacogenetic screening in SA. Enumerating the benefit of pre-emptive pharmacogenetic screening in SA will only be possible once we initiate its full application. However, regional genomic diversity, disease burden, and first-line treatment options could be harnessed to target stratified PGx today.

5.
Front Genet ; 13: 864725, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35495161

RESUMO

Pharmaceuticals are indispensable to healthcare as the burgeoning global population is challenged by diseases. The African continent harbors unparalleled genetic diversity, yet remains largely underrepresented in pharmaceutical research and development, which has serious implications for pharmaceuticals approved for use within the African population. Adverse drug reactions (ADRs) are often underpinned by unique variations in genes encoding the enzymes responsible for their uptake, metabolism, and clearance. As an example, individuals of African descent (14-34%) harbor an exclusive genetic variant in the gene encoding a liver metabolizing enzyme (CYP2D6) which reduces the efficacy of the breast cancer chemotherapeutic Tamoxifen. However, CYP2D6 genotyping is not required prior to dispensing Tamoxifen in sub-Saharan Africa. Pharmacogenomics is fundamental to precision medicine and the absence of its implementation suggests that Africa has, to date, been largely excluded from the global narrative around stratified healthcare. Models which could address this need, include primary human hepatocytes, immortalized hepatic cell lines, and induced pluripotent stem cell (iPSC) derived hepatocyte-like cells. Of these, iPSCs, are promising as a functional in vitro model for the empirical evaluation of drug metabolism. The scale with which pharmaceutically relevant African genetic variants can be stratified, the expediency with which these platforms can be established, and their subsequent sustainability suggest that they will have an important role to play in the democratization of stratified healthcare in Africa. Here we discuss the requirement for African hepatic models, and their implications for the future of pharmacovigilance on the African continent.

6.
Artigo em Inglês | MEDLINE | ID: mdl-30123777

RESUMO

An emerging realization of infectious disease is that pathogens can cause a high incidence of genetic instability within the host as a result of infection-induced DNA lesions. These often lead to classical hallmarks of cancer, one of which is the ability to evade apoptosis despite the presence of numerous genetic mutations that should be otherwise lethal. The Human Immunodeficiency Virus type 1 (HIV-1) is one such pathogen as it induces apoptosis in CD4+ T cells but is largely non-cytopathic in macrophages. As a consequence there is long-term dissemination of the pathogen specifically by these infected yet surviving host cells. Apoptosis is triggered by double-strand breaks (DSBs), such as those induced by integrating retroviruses like HIV-1, and is coordinated by the p53-regulated long noncoding RNA lincRNA-p21. As is typical for a long noncoding RNA, lincRNA-p21 mediates its activities in a complex with one of its two protein binding partners, namely HuR and hnRNP-K. In this work, we monitor the cellular response to infection to determine how HIV-1 induces DSBs in macrophages yet evades apoptosis in these cells. We show that the virus does so by securing the pro-survival MAP2K1/ERK2 cascade early upon entry, in a gp120-dependent manner, to orchestrate a complex dysregulation of lincRNA-p21. By sequestering the lincRNA-p21 partner HuR in the nucleus, HIV-1 enables lincRNA-p21 degradation. Simultaneously, the virus permits transcription of pro-survival genes by sequestering lincRNA-p21's other protein partner hnRNP-K in the cytoplasm via the MAP2K1/ERK2 pathway. Of particular note, this MAP2K1/ERK2 pro-survival cascade is switched off during T cell maturation and is thus unavailable for similar viral manipulation in mature CD4+ T cells. We show that the introduction of MAP2K1, ERK2, or HDM2 inhibitors in HIV-infected macrophages results in apoptosis, providing strong evidence that the viral-mediated apoptotic block can be released, specifically by restoring the nuclear interaction of lincRNA-p21 and its apoptosis protein partner hnRNP-K. Together, these results reveal a unique example of pathogenic control over mammalian apoptosis and DNA damage via a host long noncoding RNA, and present MAP2K1/ERK2 inhibitors as a novel therapeutic intervention strategy for HIV-1 infection in macrophages.


Assuntos
Apoptose , HIV-1/patogenicidade , Interações Hospedeiro-Patógeno , Evasão da Resposta Imune , Macrófagos/imunologia , Macrófagos/virologia , RNA Longo não Codificante/metabolismo , Células Cultivadas , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Quebras de DNA de Cadeia Dupla , Proteína gp120 do Envelope de HIV/metabolismo , HIV-1/crescimento & desenvolvimento , Ribonucleoproteínas Nucleares Heterogêneas Grupo K/metabolismo , Humanos , MAP Quinase Quinase 1/metabolismo , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Transdução de Sinais
7.
Front Genet ; 6: 108, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25859257

RESUMO

On October 28th 1943 Winston Churchill said "we shape our buildings, and afterward our buildings shape us" (Humes, 1994). Churchill was pondering how and when to rebuild the British House of Commons, which had been destroyed by enemy bombs on May 10th 1941. The old House had been small and insufficient to hold all its members, but was restored to its original form in 1950 in order to recapture the "convenience and dignity" that the building had shaped into its parliamentary members. The circular loop whereby buildings or dwellings are shaped and go on to shape those that reside in them is also true of pathogens and their hosts. As obligate parasites, pathogens need to alter their cellular host environments to ensure survival. Typically pathogens modify cellular transcription profiles and in doing so, the pathogen in turn is affected, thereby closing the loop. As key orchestrators of gene expression, non-coding RNAs provide a vast and extremely precise set of tools for pathogens to target in order to shape the cellular environment. This review will focus on host non-coding RNAs that are manipulated by the infamous intracellular pathogen, the human immunodeficiency virus (HIV). We will briefly describe both short and long host non-coding RNAs and discuss how HIV gains control of these factors to ensure widespread dissemination throughout the host as well as the establishment of lifelong, chronic infection.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA