Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 242(Pt 2): 124772, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37172706

RESUMO

Evolution of new variants of SARS-CoV-2 warrant the need for the continued efforts in identifying target-oriented new drugs. Dual targeting agents against MPro and PLPro not only overcome the incomplete efficacy but also the drug resistance, which is common problem. Since both these are cysteine proteases, we designed 2-chloroquinoline based molecules with additional imine moiety in the middle as possible nucleophilic warheads. In the first round of design and synthesis, three molecules (C3, C4 and C5) inhibited (Ki < 2 µM) only MPro by binding covalently to C145 and one molecule (C10) inhibited both the proteases non-covalently (Ki < 2 µM) with negligible cytotoxicity. Further conversion of the imine in C10 to azetidinone (C11) improved the potency against both the enzymes in the nanomolar range (820 nM against MPro and 350 nM against PLPro) with no cytotoxicity. Conversion of imine to thiazolidinone (C12), reduced the inhibition by 3-5 folds against both the enzymes. Biochemical and computational studies suggest that C10-C12 bind in the substrate binding pocket of MPro and in the BL2 loop of the PLPro. Since these dual inhibitors have least cytotoxicity, they could be further explored as therapeutics against the SARS-CoV-2 and other analogous viruses.


Assuntos
COVID-19 , Cisteína Proteases , Humanos , SARS-CoV-2 , Iminas , Inibidores de Proteases/farmacologia , Antivirais/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA