Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Immunity ; 54(2): 247-258.e7, 2021 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-33444549

RESUMO

The vaccine strain against smallpox, vaccinia virus (VACV), is highly immunogenic yet causes relatively benign disease. These attributes are believed to be caused by gene loss in VACV. Using a targeted small interfering RNA (siRNA) screen, we identified a viral inhibitor found in cowpox virus (CPXV) and other orthopoxviruses that bound to the host SKP1-Cullin1-F-box (SCF) machinery and the essential necroptosis kinase receptor interacting protein kinase 3 (RIPK3). This "viral inducer of RIPK3 degradation" (vIRD) triggered ubiquitination and proteasome-mediated degradation of RIPK3 and inhibited necroptosis. In contrast to orthopoxviruses, the distantly related leporipoxvirus myxoma virus (MYXV), which infects RIPK3-deficient hosts, lacks a functional vIRD. Introduction of vIRD into VACV, which encodes a truncated and defective vIRD, enhanced viral replication in mice. Deletion of vIRD reduced CPXV-induced inflammation, viral replication, and mortality, which were reversed in RIPK3- and MLKL-deficient mice. Hence, vIRD-RIPK3 drives pathogen-host evolution and regulates virus-induced inflammation and pathogenesis.


Assuntos
Vírus da Varíola Bovina/fisiologia , Varíola Bovina/imunologia , RNA Interferente Pequeno/genética , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Vaccinia virus/metabolismo , Proteínas Virais/metabolismo , Animais , Evolução Molecular , Células HEK293 , Interações Hospedeiro-Patógeno , Humanos , Inflamação , Camundongos , Camundongos Knockout , Necroptose/genética , Orthopoxvirus , Filogenia , Proteínas Quinases/genética , Proteólise , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Análise de Sequência de RNA , Proteínas Virais/genética , Replicação Viral
2.
Immunity ; 47(4): 635-647.e6, 2017 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-29045898

RESUMO

In the Drosophila immune response, bacterial derived diaminopimelic acid-type peptidoglycan binds the receptors PGRP-LC and PGRP-LE, which through interaction with the adaptor protein Imd leads to activation of the NF-κB homolog Relish and robust antimicrobial peptide gene expression. PGRP-LC, PGRP-LE, and Imd each contain a motif with some resemblance to the RIP Homotypic Interaction Motif (RHIM), a domain found in mammalian RIPK proteins forming functional amyloids during necroptosis. Here we found that despite sequence divergence, these Drosophila cryptic RHIMs formed amyloid fibrils in vitro and in cells. Amyloid formation was required for signaling downstream of Imd, and in contrast to the mammalian RHIMs, was not associated with cell death. Furthermore, amyloid formation constituted a regulatable step and could be inhibited by Pirk, an endogenous feedback regulator of this pathway. Thus, diverse sequence motifs are capable of forming amyloidal signaling platforms, and the formation of these platforms may present a regulatory point in multiple biological processes.


Assuntos
Amiloide/imunologia , Proteínas de Transporte/imunologia , Proteínas de Drosophila/imunologia , NF-kappa B/imunologia , Receptores de Superfície Celular/imunologia , Transdução de Sinais/imunologia , Motivos de Aminoácidos/genética , Motivos de Aminoácidos/imunologia , Sequência de Aminoácidos , Amiloide/metabolismo , Animais , Sítios de Ligação/genética , Sítios de Ligação/imunologia , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Linhagem Celular , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citologia , Drosophila melanogaster/genética , Drosophila melanogaster/imunologia , Feminino , Expressão Gênica/imunologia , Masculino , Microscopia Confocal , Modelos Imunológicos , Mutação , NF-kappa B/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Proteína Serina-Treonina Quinases de Interação com Receptores/imunologia , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência de Aminoácidos
3.
Can J Microbiol ; 60(7): 425-9, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24893133

RESUMO

Influenza virus remains one of the most important disease-causing viruses owing to its high adaptability and even higher contagious nature. Thus, it poses a constant threat of pandemic, engulfing a large population within the smallest possible time interval. A similar threat was anticipated with the identification of the novel H7N9 virus in China on 30 March 2013. Detection of transmission of the virus between humans has caused a stir with the identification of family clusters along with sporadic infections all across China. In this review we analyze the potential of the novel H7N9 virus as a probable cause of a pandemic and the possible consequences thereof.


Assuntos
Surtos de Doenças , Subtipo H7N9 do Vírus da Influenza A , Influenza Humana/epidemiologia , Animais , Aves , China/epidemiologia , Humanos , Subtipo H7N9 do Vírus da Influenza A/metabolismo , Subtipo H7N9 do Vírus da Influenza A/patogenicidade , Subtipo H7N9 do Vírus da Influenza A/fisiologia , Influenza Aviária/epidemiologia , Influenza Aviária/transmissão , Influenza Aviária/virologia , Influenza Humana/transmissão , Influenza Humana/virologia , Receptores Virais/metabolismo , Especificidade da Espécie , Virulência , Replicação Viral
4.
Cell Death Differ ; 26(1): 4-13, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30050058

RESUMO

The primary function of the immune system is to protect the host from invading pathogens. In response, microbial pathogens have developed various strategies to evade detection and destruction by the immune system. This tug-of-war between the host and the pathogen is a powerful force that shapes organismal evolution. Regulated cell death (RCD) is a host response that limits the reservoir for intracellular pathogens such as viruses. Since pathogen-specific T cell and B cell responses typically take several days and is therefore slow-developing, RCD of infected cells during the first few days of the infection is critical for organismal survival. This innate immune response not only restricts viral replication, but also serves to promote anti-viral inflammation through cell death-associated release of damage-associated molecular patterns (DAMPs). In recent years, necroptosis has been recognized as an important response against many viruses. The central adaptor for necroptosis, RIPK3, also exerts anti-viral effects through cell death-independent activities such as promoting cytokine gene expression. Here, we will discuss recent advances on how viruses counteract this host defense mechanism and the effect of necroptosis on the anti-viral inflammatory reaction.


Assuntos
Interações Hospedeiro-Patógeno/imunologia , Inflamação/virologia , Necroptose/imunologia , Viroses/imunologia , Citocinas/fisiologia , Infecções por Herpesviridae/imunologia , Infecções por Herpesviridae/metabolismo , Humanos , Imunidade Inata , Inflamação/imunologia , Infecções por Poxviridae/imunologia , Infecções por Poxviridae/metabolismo , Infecções por Vírus de RNA/imunologia , Infecções por Vírus de RNA/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Replicação Viral/imunologia , Vírus/metabolismo
5.
FEBS J ; 281(13): 2899-914, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24802111

RESUMO

Influenza A virus (IAV), similar to other viruses, exploits the machinery of human host cells for its survival and replication. We identified α-actinin-4, a host cytoskeletal protein, as an interacting partner of IAV nucleoprotein (NP). We confirmed this interaction using co-immunoprecipitation studies, first in a coupled in vitro transcription-translation assay and then in cells either transiently co-expressing the two proteins or infected with whole IAV. Importantly, the NP-actinin-4 interaction was observed in several IAV subtypes, including the 2009 H1N1 pandemic virus. Moreover, immunofluorescence studies revealed that both NP and actinin-4 co-localized largely around the nucleus and also in the cytoplasmic region of virus-infected A549 cells. Silencing of actinin-4 expression resulted in not only a significant decrease in NP, M2 and NS1 viral protein expression, but also a reduction of both NP mRNA and viral RNA levels, as well as viral titers, 24 h post-infection with IAV, suggesting that actinin-4 was critical for viral replication. Furthermore, actinin-4 depletion reduced the amount of NP localized in the nucleus. Treatment of infected cells with wortmannin, a known inhibitor of actinin-4, led to a decrease in NP mRNA levels and also caused the nuclear retention of NP, further strengthening our previous observations. Taken together, the results of the present study indicate that actinin-4, a novel interacting partner of IAV NP, plays a crucial role in viral replication and this interaction may participate in nuclear localization of NP and/or viral ribonucleoproteins.


Assuntos
Actinina/metabolismo , Vírus da Influenza A/fisiologia , Proteínas de Ligação a RNA/fisiologia , Proteínas do Core Viral/fisiologia , Replicação Viral , Actinina/genética , Células HEK293 , Interações Hospedeiro-Patógeno , Humanos , Proteínas do Nucleocapsídeo , Mapeamento de Interação de Proteínas , Transporte Proteico , Ativação Transcricional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA