Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
PLoS One ; 18(5): e0284846, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37163531

RESUMO

Biodegradable polyhydroxybutyrate (PHB) can be produced from methane by some type II methanotroph such as the genus Methylocystis. This study presents the comparative genomic analysis of a newly isolated methanotroph, Methylocystis sp. MJC1 as a biodegradable PHB-producing platform strain. Methylocystis sp. MJC1 accumulates up to 44.5% of PHB based on dry cell weight under nitrogen-limiting conditions. To facilitate its development as a PHB-producing platform strain, the complete genome sequence of Methylocystis sp. MJC1 was assembled, functionally annotated, and compared with genomes of other Methylocystis species. Phylogenetic analysis has shown that Methylocystis parvus to be the closest species to Methylocystis sp. MJC1. Genome functional annotation revealed that Methylocystis sp. MJC1 contains all major type II methanotroph biochemical pathways such as the serine cycle, EMC pathway, and Krebs cycle. Interestingly, Methylocystis sp. MJC1 has both particulate and soluble methane monooxygenases, which are not commonly found among Methylocystis species. In addition, this species also possesses most of the RuMP pathway reactions, a characteristic of type I methanotrophs, and all PHB biosynthetic genes. These comparative analysis would open the possibility of future practical applications such as the development of organism-specific genome-scale models and application of metabolic engineering strategies to Methylocystis sp. MJC1.


Assuntos
Metano , Methylocystaceae , Filogenia , Metano/metabolismo , Genômica , Methylocystaceae/genética , Methylocystaceae/metabolismo
2.
Microorganisms ; 8(3)2020 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-32244934

RESUMO

Methylosinus trichosporium OB3b is an obligate aerobic methane-utilizing alpha-proteobacterium. Since its isolation, M. trichosporium OB3b has been established as a model organism to study methane metabolism in type II methanotrophs. M. trichosporium OB3b utilizes soluble and particulate methane monooxygenase (sMMO and pMMO respectively) for methane oxidation. While the source of electrons is known for sMMO, there is less consensus regarding electron donor to pMMO. To investigate this and other questions regarding methane metabolism, the genome-scale metabolic model for M. trichosporium OB3b (model ID: iMsOB3b) was reconstructed. The model accurately predicted oxygen: methane molar uptake ratios and specific growth rates on nitrate-supplemented medium with methane as carbon and energy source. The redox-arm mechanism which links methane oxidation with complex I of electron transport chain has been found to be the most optimal mode of electron transfer. The model was also qualitatively validated on ammonium-supplemented medium indicating its potential to accurately predict methane metabolism in different environmental conditions. Finally, in silico investigations regarding flux distribution in central carbon metabolism of M. trichosporium OB3b were performed. Overall, iMsOB3b can be used as an organism-specific knowledgebase and a platform for hypothesis-driven theoretical investigations of methane metabolism.

3.
Sci Data ; 5: 180242, 2018 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-30422127

RESUMO

Kazakhstan's soil properties have yet to be comprehensively characterized. We sampled 40 sites consisting of ten major soil types at spring (wet) and late-summer (dry) seasons. The sample locations range from semi-arid to arid with an annual mean air temperature from 1.2 to 10.7 °C and annual precipitation from less than 200 to around 400 mm. Overall topsoil total (STC), organic (SOC), and inorganic (SIC) carbon did not change significantly between spring and late summer. STC and SOC show a wave like pattern from north to south with two maxima in northern and southern Kazakhstan and one minimum in central Kazakhstan. With a few exceptions SIC content at northern sites is generally low, whereas at Lake Balkhash SIC can exceed 75% of STC. Independent of the seasons, SOC significantly differed among soil types. Total nitrogen content distribution among our sampling sites followed a similar pattern as SOC with significant differences between soil types occurring in northern, central and southern Kazakhstan.

4.
Oncol Lett ; 12(1): 375-378, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27347153

RESUMO

An increasing amount of evidence has shown that tumor suppressors can become oncogenes, or vice versa, but the mechanism behind this is unclear. Recent findings have suggested that phosphatase and tensin homolog (PTEN) is one of the powerful switches for the conversion between tumor suppressors and oncogenes. PTEN regulates a number of cellular processes, including cell death and proliferation, through the phosphoinositide 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/AKT/mTOR) pathway. Furthermore, a number of studies have suggested that PTEN deletions may alter various functions of certain tumor suppressor and oncogenic proteins. The aim of the present review was to analyze specific cases driven by PTEN loss/AKT activation, including aberrant signaling pathways and novel drug targets for clinical application in personalized medicine. The findings illustrate how PTEN loss and/or AKT activation switches MDM2-dependent p53 downregulation, and induces conversion between oncogene and tumor suppressor in enhancer of zeste homolog 2, BTB domain-containing 7A, alternative reading frame 2, p27 and breast cancer 1, early onset, through multiple mechanisms. This review highlights the genetic basis of complex drug targets and provides insights into the rationale of precision cancer therapy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA