Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Lasers Med Sci ; 37(2): 1333-1341, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34406533

RESUMO

Nanoparticle-mediated hyperthermia is one of the prominent adjuvant therapies which has been faced by many problematic challenges such as efficiency and safety. To compare the nanoparticle-mediated photothermal therapy and radiofrequency electric field hyperthermia, green-synthesized curcumin-coated gold nanoparticles (Cur@AuNPs) were applied in an in vitro study. Using recently published methodologies, each step of the study was performed. Through green chemistry, curcumin was applied as both a reducing and a capping agent in the gold nanoparticle synthesis process. Various techniques were applied for the characterization of the synthesized nanoparticles. The heating rate of Cur@AuNPs in the presence of RFEF or laser irradiation was recorded by using a non-contact thermometer. The cellular uptake of the Cur@AuNPs was studied by ICP-AES. The cellular viability and apoptosis rate of different treatment were measured to investigate the effect of two different nano-hyperthermia techniques on the murine colorectal cancer cell line. The average size of Cur@AuNPs was 7.2 ± 3.3 nm. The stability of the gold nanoparticles in the phosphate buffer saline with and without fetal bovine serum was verified by UV-Vis spectroscopy. FTIR, UV-Vis spectroscopy, and TEM indicate that the stability is a result of phenolic coating on the surface of nanoparticles. Cur@AuNPs can absorb both light and radiofrequency electric field exposure in a way that could kill cancerous cells in a significant number (30% in 64 µg/ml concentration). Green-synthesized Cur@AuNPs could induce apoptosis cell death in photothermal therapy and radiofrequency electric field hyperthermia.


Assuntos
Curcumina , Hipertermia Induzida , Nanopartículas Metálicas , Animais , Sobrevivência Celular , Curcumina/farmacologia , Ouro/química , Hipertermia Induzida/métodos , Nanopartículas Metálicas/química , Camundongos
2.
Cell Tissue Res ; 375(3): 709-721, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30338376

RESUMO

Full-thickness skin defect is one of the main clinical problems, which cannot be repaired spontaneously. The aim of this study was to evaluate the feasibility of combining nanofibers with ADM as a bilayer scaffold for treatment of full-thickness skin wounds in a single-step procedure. The nanofibrous polycaprolactone/fibrinogen scaffolds were fabricated by electrospinning. Subsequently, mesenchymal stem cells were isolated from rat adipose tissues and characterized by flow cytometry. Cell adhesion, proliferation, and the epidermal differentiation potential of adipose-derived stem cells (ADSCs) on nanofibrous scaffolds were investigated by scanning electron microscopy (SEM), alamarBlue, and real-time PCR, respectively. In animal studies, full-thickness excisional wounds were created on the back of rats and treated with following groups: ADM, ADM-ADSCs, nanofiber, nanofiber-ADSCs, bilayer, and bilayer-ADSCs. In all groups, wounds were harvested on days 14 and 21 after treatment to evaluate re-epithelialization, blood vessel density, and collagen content. The results indicated that ADSCs seeded on ADM, nanofiber, and bilayer scaffolds can promote re-epithelialization, angiogenesis, and collagen remodeling in comparison with cell-free scaffolds. In conclusion, nanofiber-ADSCs showed the best results for re-epithelialization (according to histological scoring), average blood vessel density (92.7 ± 6.8), and collagen density (87.4 ± 4.9%) when compared to the control and other experimental groups.


Assuntos
Derme Acelular/metabolismo , Células-Tronco Mesenquimais/citologia , Nanofibras/química , Pele/patologia , Alicerces Teciduais/química , Cicatrização , Derme Acelular/efeitos dos fármacos , Tecido Adiposo/citologia , Animais , Diferenciação Celular/efeitos dos fármacos , Linhagem da Célula/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Forma Celular/efeitos dos fármacos , Colágeno/metabolismo , Epiderme/efeitos dos fármacos , Epiderme/metabolismo , Fibrinogênio/farmacologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Neovascularização Fisiológica/efeitos dos fármacos , Poliésteres/farmacologia , Ratos Wistar , Engenharia Tecidual , Cicatrização/efeitos dos fármacos
3.
Breast Cancer ; 27(2): 243-251, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31621052

RESUMO

BACKGROUND: The aim of this study was to develop nonionic surfactant vesicles (niosomes) as a promising nanocarrier to enhance the anticancer activity of artemether. METHODS: The niosomes were prepared by thin-film hydration method containing a mixture of Span, Tween and cholesterol (Chol) in different molar ratios. All formulations were characterized in terms of size, entrapment efficiency (%EE), release profile and morphology. The optimized niosomal formulation (F7), artemether and phosphate buffered saline (PBS) were intratumorally administrated to mice as the nano-niosome group, the free drug group and the control group, respectively (n = 4 per group). Tumor volume was measured during the 12-day experiment, then mice were sacrificed to evaluate the necrosis, angiogenesis, and cell proliferation of tumor tissues by H&E, CD34 and Ki-67 immunostaining, respectively. RESULTS: Both artemether and nano-niosome groups could decrease angiogenesis and proliferation of tumor cells. However, in nano-niosome group superior tumor necrosis and smaller tumor volume were observed compared to both artemether and control groups. CONCLUSIONS: The niosomal formulation could be a promising carrier for breast cancer treatment.


Assuntos
Artemeter/administração & dosagem , Neoplasias da Mama/tratamento farmacológico , Animais , Artemeter/farmacologia , Neoplasias da Mama/patologia , Feminino , Humanos , Irã (Geográfico) , Lipossomos , Camundongos , Camundongos Endogâmicos BALB C
4.
Mater Sci Eng C Mater Biol Appl ; 109: 110564, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32228906

RESUMO

The main aim of this study was to improve the efficacy of peripheral nerve regeneration by an artificial neural guidance conduit (NGC) as a carrier to transplant allogeneic Schwann cells (SCs) and curcumin encapsulated chitosan nanoparticles (nanocurcumin). The conduit was prepared by poly-L-lactic acid (PLLA) and surface-modified multi-wall carbon nanotubes (mMWCNT) and filled with SCs and nanocurcumin. SCs play an important role in the regeneration of injured peripheral nerve and controlled curcumin release can decrease SCs apoptosis, and enhance the regeneration and functional recovery of injured peripheral nerves. The mechanical properties, contact angle, and cell biocompatibility experiments showed that the optimized concentration of mMWCNT inside PLLA wall of conduits was 0.15 wt%. The drug release experiments showed slower release of curcumin from nanocurcumin samples compared to nanocurcumin encapsulated inside NGC wrapped fibrin gel sample. It was found that simultaneous using of both SCs and curcumin inside NGC had a significant role in sciatic nerve regeneration in vivo. Histological examination revealed a significant increase in the number of axons in injured sciatic nerve following treatment by SCs and nanocurcumin compared to negative control group. Histological evaluation also revealed a significant decrease in the number of vessels in fibrin groups compared to positive control group. The results showed that there was no significant difference between the reaction time and sciatic functional index (SFI) values of rats with injured sciatic nerve treated by NGC/SCs/nanocurcumin sample and autograft sample. In conclusion, our results strongly showed that PLLA/mMWCNT nanofibrous conduit filled with fibrin gel containing SCs and nanocurcumin is a proper strategy for improving nerve regeneration after a nerve transaction in the rat.


Assuntos
Quitosana , Curcumina , Regeneração Tecidual Guiada , Nanotubos de Carbono/química , Regeneração Nervosa/efeitos dos fármacos , Poliésteres , Células de Schwann , Nervo Isquiático , Animais , Células Cultivadas , Quitosana/química , Quitosana/farmacocinética , Quitosana/farmacologia , Curcumina/química , Curcumina/farmacocinética , Curcumina/farmacologia , Preparações de Ação Retardada/química , Preparações de Ação Retardada/farmacocinética , Preparações de Ação Retardada/farmacologia , Masculino , Poliésteres/química , Poliésteres/farmacocinética , Poliésteres/farmacologia , Ratos , Ratos Wistar , Células de Schwann/metabolismo , Células de Schwann/transplante , Nervo Isquiático/lesões , Nervo Isquiático/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA