Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 117(21): 11674-11684, 2020 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-32393635

RESUMO

Although adipocytes are major targets of insulin, the influence of impaired insulin action in adipocytes on metabolic homeostasis remains unclear. We here show that adipocyte-specific PDK1 (3'-phosphoinositide-dependent kinase 1)-deficient (A-PDK1KO) mice manifest impaired metabolic actions of insulin in adipose tissue and reduction of adipose tissue mass. A-PDK1KO mice developed insulin resistance, glucose intolerance, and hepatic steatosis, and this phenotype was suppressed by additional ablation of FoxO1 specifically in adipocytes (A-PDK1/FoxO1KO mice) without an effect on adipose tissue mass. Neither circulating levels of adiponectin and leptin nor inflammatory markers in adipose tissue differed between A-PDK1KO and A-PDK1/FoxO1KO mice. Lipidomics and microarray analyses revealed that leukotriene B4 (LTB4) levels in plasma and in adipose tissue as well as the expression of 5-lipoxygenase (5-LO) in adipose tissue were increased and restored in A-PDK1KO mice and A-PDK1/FoxO1KO mice, respectively. Genetic deletion of the LTB4 receptor BLT1 as well as pharmacological intervention to 5-LO or BLT1 ameliorated insulin resistance in A-PDK1KO mice. Furthermore, insulin was found to inhibit LTB4 production through down-regulation of 5-LO expression via the PDK1-FoxO1 pathway in isolated adipocytes. Our results indicate that insulin signaling in adipocytes negatively regulates the production of LTB4 via the PDK1-FoxO1 pathway and thereby maintains systemic insulin sensitivity.


Assuntos
Proteínas Quinases Dependentes de 3-Fosfoinositídeo , Adipócitos/metabolismo , Araquidonato 5-Lipoxigenase/metabolismo , Proteína Forkhead Box O1 , Resistência à Insulina , Proteínas Quinases Dependentes de 3-Fosfoinositídeo/genética , Proteínas Quinases Dependentes de 3-Fosfoinositídeo/metabolismo , Animais , Células Cultivadas , Proteína Forkhead Box O1/genética , Proteína Forkhead Box O1/metabolismo , Resistência à Insulina/genética , Resistência à Insulina/fisiologia , Leucotrieno B4/metabolismo , Masculino , Camundongos , Camundongos Knockout , Transdução de Sinais/genética
2.
Biochem Biophys Res Commun ; 500(4): 910-916, 2018 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-29705701

RESUMO

In the hypothalamic arcuate nucleus (ARC), orexigenic agouti-related peptide (AgRP) neurons regulate feeding behavior and energy homeostasis. The 3-phosphoinositide-dependent protein kinase-1 (PDK1) in AgRP neurons serves as a major signaling molecule for leptin and insulin, the hormones regulating feeding behavior, energy homeostasis and circulation. However, it is unclear whether PDK1 in AGRP neurons is also involved in regulation of blood pressure. This study explored it by generating and analyzing AgRP neuron-specific PDK1 knockout (Agrp-Pdk1flox/flox) mice and effect of high salt diet on blood pressure in KO and WT mice was analyzed. Under high salt diet feeding, systolic blood pressure (SBP) of Agrp-Pdk1flox/flox mice was significantly elevated compared to Agrp-Cre mice. When the high salt diet was switched to control low salt diet, SBP of Agrp-Pdk1flox/flox mice returned to the basal level observed in Agrp-Cre mice within 1 week. In Agrp-Pdk1flox/flox mice, urinary noradrenalin excretion and NUCB2 mRNA expression in hypothalamic paraventricular nucleus (PVN) were markedly upregulated. Moreover, silencing of NUCB2 in the PVN counteracted the rises in urinary noradrenalin excretions and SBP. These results demonstrate a novel role of PDK1 in AgRP neurons to counteract the high salt diet-induced hypertension by preventing hyperactivation of PVN nesfatin-1 neurons.


Assuntos
Proteína Relacionada com Agouti/genética , Núcleo Arqueado do Hipotálamo/metabolismo , Hipertensão/genética , Neurônios/metabolismo , Núcleo Hipotalâmico Paraventricular/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteína Relacionada com Agouti/deficiência , Animais , Núcleo Arqueado do Hipotálamo/efeitos dos fármacos , Núcleo Arqueado do Hipotálamo/fisiopatologia , Pressão Sanguínea , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Modelos Animais de Doenças , Ingestão de Energia/efeitos dos fármacos , Comportamento Alimentar/efeitos dos fármacos , Regulação da Expressão Gênica , Hipertensão/induzido quimicamente , Hipertensão/metabolismo , Hipertensão/fisiopatologia , Insulina/genética , Insulina/metabolismo , Leptina/genética , Leptina/metabolismo , Camundongos , Camundongos Knockout , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/patologia , Norepinefrina/urina , Nucleobindinas , Núcleo Hipotalâmico Paraventricular/efeitos dos fármacos , Núcleo Hipotalâmico Paraventricular/fisiopatologia , Proteínas Serina-Treonina Quinases/deficiência , Piruvato Desidrogenase Quinase de Transferência de Acetil , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução de Sinais , Cloreto de Sódio na Dieta/efeitos adversos
3.
EMBO J ; 31(10): 2275-95, 2012 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-22510882

RESUMO

Forkhead box-containing protein o (Foxo) 1 is a key transcription factor in insulin and glucose metabolism. We identified a Foxo1-CoRepressor (FCoR) protein in mouse adipose tissue that inhibits Foxo1's activity by enhancing acetylation via impairment of the interaction between Foxo1 and the deacetylase Sirt1 and via direct acetylation. FCoR is phosphorylated at Threonine 93 by catalytic subunit of protein kinase A and is translocated into nucleus, making it possible to bind to Foxo1 in both cytosol and nucleus. Knockdown of FCoR in 3T3-F442A cells enhanced expression of Foxo target and inhibited adipocyte differentiation. Overexpression of FCoR in white adipose tissue decreased expression of Foxo-target genes and adipocyte size and increased insulin sensitivity in Lepr(db/db) mice and in mice fed a high-fat diet. In contrast, Fcor knockout mice were lean, glucose intolerant, and had decreased insulin sensitivity that was accompanied by increased expression levels of Foxo-target genes and enlarged adipocytes. Taken together, these data suggest that FCoR is a novel repressor that regulates insulin sensitivity and energy metabolism in adipose tissue by acting to fine-tune Foxo1 activity.


Assuntos
Proteínas Correpressoras/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Regulação da Expressão Gênica , Resistência à Insulina , Acetilação , Tecido Adiposo/metabolismo , Animais , Proteínas Correpressoras/genética , Proteína Forkhead Box O1 , Expressão Gênica , Técnicas de Silenciamento de Genes , Camundongos , Camundongos Knockout , Sirtuína 1/metabolismo
4.
Nat Genet ; 32(2): 245-53, 2002 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-12219087

RESUMO

Type 2 diabetes results from impaired action and secretion of insulin. It is not known whether the two defects share a common pathogenesis. We show that haploinsufficiency of the Foxo1 gene, encoding a forkhead transcription factor (forkhead box transcription factor O1), restores insulin sensitivity and rescues the diabetic phenotype in insulin-resistant mice by reducing hepatic expression of glucogenetic genes and increasing adipocyte expression of insulin-sensitizing genes. Conversely, a gain-of-function Foxo1 mutation targeted to liver and pancreatic beta-cells results in diabetes arising from a combination of increased hepatic glucose production and impaired beta-cell compensation due to decreased Pdx1 expression. These data indicate that Foxo1 is a negative regulator of insulin sensitivity in liver, adipocytes and pancreatic beta-cells. Impaired insulin signaling to Foxo1 provides a unifying mechanism for the common metabolic abnormalities of type 2 diabetes.NOTE: In the AOP version of this article, the name of the fourth author was misspelled as W K Cavanee rather than the correct spelling: W K Cavenee. This has been corrected in the full-text online version of the article. The name will appear correctly in the print version.


Assuntos
Insulina/fisiologia , Ilhotas Pancreáticas/fisiologia , Fatores de Transcrição/genética , Animais , Northern Blotting , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/etiologia , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Proteína Forkhead Box O1 , Fatores de Transcrição Forkhead , Imuno-Histoquímica , Resistência à Insulina/genética , Fígado/metabolismo , Camundongos , Camundongos Transgênicos , Mutação , Especificidade de Órgãos , Receptor de Insulina/genética , Fatores de Transcrição/fisiologia
5.
Circ Res ; 107(12): 1470-82, 2010 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-20947830

RESUMO

RATIONALE: autophagy, a bulk degradation process of cytosolic proteins and organelles, is protective during nutrient starvation in cardiomyocytes (CMs). However, the underlying signaling mechanism mediating autophagy is not well understood. OBJECTIVE: we investigated the role of FoxOs and its posttranslational modification in mediating starvation-induced autophagy. METHODS AND RESULTS: glucose deprivation (GD) increased autophagic flux in cultured CMs, as evidenced by increased mRFP-GFP-LC3 puncta and decreases in p62, which was accompanied by upregulation of Sirt1 and FoxO1. Overexpression of either Sirt1 or FoxO1 was sufficient for inducing autophagic flux, whereas both Sirt1 and FoxO1 were required for GD-induced autophagy. GD increased deacetylation of FoxO1, and Sirt1 was required for GD-induced deacetylation of FoxO1. Overexpression of FoxO1(3A/LXXAA), which cannot interact with Sirt1, or p300, a histone acetylase, increased acetylation of FoxO1 and inhibited GD-induced autophagy. FoxO1 increased expression of Rab7, a small GTP-binding protein that mediates late autophagosome-lysosome fusion, which was both necessary and sufficient for mediating FoxO1-induced increases in autophagic flux. Although cardiac function was maintained in control mice after 48 hours of food starvation, it was significantly deteriorated in mice with cardiac-specific overexpression of FoxO1(3A/LXXAA), those with cardiac-specific homozygous deletion of FoxO1 (c-FoxO1(-/-)), and beclin1(+/-) mice, in which autophagy is significantly inhibited. CONCLUSIONS: these results suggest that Sirt1-mediated deacetylation of FoxO1 and upregulation of Rab7 play an important role in mediating starvation-induced increases in autophagic flux, which in turn plays an essential role in maintaining left ventricular function during starvation.


Assuntos
Autofagia , Fatores de Transcrição Forkhead/metabolismo , Miócitos Cardíacos/metabolismo , Sirtuína 1/metabolismo , Inanição/patologia , Acetilação , Animais , Células Cultivadas , Proteína Forkhead Box O1 , Camundongos , Miócitos Cardíacos/patologia , Função Ventricular Esquerda , Proteínas rab de Ligação ao GTP/metabolismo , proteínas de unión al GTP Rab7
6.
Cell Rep ; 37(9): 110048, 2021 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-34852224

RESUMO

Intraluminal lymphatic valves (LVs) contribute to the prevention of lymph backflow and maintain circulatory homeostasis. Several reports have investigated the molecular mechanisms which promote LV formation; however, the way in which they are suppressed is not completely clear. We show that the forkhead transcription factor FOXO1 is a suppressor of LV formation and maintenance in lymphatic endothelial cells. Oscillatory shear stress by bidirectional flow inactivates FOXO1 via Akt phosphorylation, resulting in the upregulation of a subset of LV-specific genes mediated by downregulation of a transcriptional repressor, PRDM1. Mice with an endothelial-specific Foxo1 deletion have an increase in LVs, and overexpression of Foxo1 in mice produces a decrease in LVs. Genetic reduction of PRDM1 rescues the decrease in LV by Foxo1 overexpression. In conclusion, FOXO1 plays a critical role in lymph flow homeostasis by preventing excess LV formation. This gene might be a therapeutic target for lymphatic circulatory abnormalities.


Assuntos
Proteína Forkhead Box O1/fisiologia , Linfangiogênese , Vasos Linfáticos/patologia , Fator 1 de Ligação ao Domínio I Regulador Positivo/metabolismo , Animais , Feminino , Humanos , Vasos Linfáticos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fosforilação , Fator 1 de Ligação ao Domínio I Regulador Positivo/genética , Transdução de Sinais
7.
Am J Physiol Endocrinol Metab ; 298(4): E787-98, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20103739

RESUMO

Both insulin and leptin signaling converge on phosphatidylinositol 3-OH kinase [PI(3)K]/3-phosphoinositide-dependent protein kinase-1 (PDK-1)/protein kinase B (PKB, also known as Akt) in proopiomelanocortin (POMC) neurons. Forkhead box-containing protein-O1 (FoxO1) is inactivated in a PI(3)K-dependent manner. However, the interrelationship between PI(3)K/PDK-1/Akt and FoxO1, and the chronic effects of the overexpression of FoxO1 in POMC neurons on energy homeostasis has not been elucidated. To determine the extent to which PDK-1 and FoxO1 signaling in POMC neurons was responsible for energy homeostasis, we generated POMC neuron-specific Pdk1 knockout mice (POMCPdk1(-/-)) and mice selectively expressing a constitutively nuclear (CN)FoxO1 or transactivation-defective (Delta256)FoxO1 in POMC neurons (CNFoxO1(POMC) or Delta256FoxO1(POMC)). POMCPdk1(-/-) mice showed increased food intake and body weight accompanied by decreased expression of Pomc gene. The CNFoxO1(POMC) mice exhibited mild obesity and hyperphagia compared with POMCPdk1(-/-) mice. Although expression of the CNFoxO1 made POMCPdk1(-/-) mice more obese due to excessive suppression of Pomc gene, overexpression of Delta256FoxO1 in POMC neurons had no effects on metabolic phenotypes and Pomc expression levels of POMCPdk1(-/-) mice. These data suggest a requirement for PDK-1 and FoxO1 in transcriptional regulation of Pomc and food intake.


Assuntos
Ingestão de Alimentos/genética , Ingestão de Alimentos/fisiologia , Fatores de Transcrição Forkhead/metabolismo , Neurônios/fisiologia , Pró-Opiomelanocortina/biossíntese , Pró-Opiomelanocortina/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , Canais de Cátion TRPP/metabolismo , Proteínas Quinases Dependentes de 3-Fosfoinositídeo , Hormônio Adrenocorticotrópico/metabolismo , Animais , Cromatina/metabolismo , Imunofluorescência , Proteína Forkhead Box O1 , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/fisiologia , Regulação da Expressão Gênica/fisiologia , Teste de Tolerância a Glucose , Imunoprecipitação , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Atividade Motora/fisiologia , Obesidade/genética , Consumo de Oxigênio/fisiologia , Plasmídeos/genética , RNA/biossíntese , RNA/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Canais de Cátion TRPP/genética , Canais de Cátion TRPP/fisiologia
8.
Cells ; 9(3)2020 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-32182991

RESUMO

The transcription factor forkhead box (FOXO) controls important biological responses, including proliferation, apoptosis, differentiation, metabolism, and oxidative stress resistance. The transcriptional activity of FOXO is tightly regulated in a variety of cellular processes. FOXO can convert the external stimuli of insulin, growth factors, nutrients, cytokines, and oxidative stress into cell-specific biological responses by regulating the transcriptional activity of target genes. However, how a single transcription factor regulates a large set of target genes in various tissues in response to a variety of external stimuli remains to be clarified. Evidence indicates that FOXO-binding proteins synergistically function to achieve tightly controlled processes. Here, we review the elaborate mechanism of FOXO-binding proteins, focusing on adipogenesis, glucose homeostasis, and other metabolic regulations in order to deepen our understanding and to identify a novel therapeutic target for the prevention and treatment of metabolic disorders.


Assuntos
Fatores de Transcrição Forkhead/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas 14-3-3/metabolismo , Proteína de Ligação a CREB/metabolismo , Insulina/metabolismo , Especificidade de Órgãos , Ligação Proteica , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Quinases Associadas a Fase S/metabolismo , Sirtuínas/metabolismo
9.
iScience ; 23(1): 100798, 2020 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-31923647

RESUMO

Pancreatic endocrine cell development into differentiated α- and ß-cells is highly regulated and involves multiple transcription factors. However, the mechanisms behind the determination of α- and ß-cell masses remains unclear. We previously identified Foxo1 CoRepressor (FCoR), which inhibits Foxo1 by acetylation. Here we demonstrate that Fcor-knockout mice (FcorKO) exhibit significantly increased α-cell mass, expression of the master α-cell regulatory transcription factor Aristaless-related homeobox (Arx), which can be normalized by ß-cell-specific FCoR overexpression (FcorKO-ßFcor), and exhibit ß-to-α-cell conversion. Compared with FcorKO, ß-cell-specific Foxo1 knockout in the FcorKO (DKO) led to decreased Arx expression and α-cell mass. Foxo1 binding to Arx promoter led to DNA methyltransferase 3a (Dnmt3a) dissociation, Arx promoter hypomethylation, and increased Arx expression. In contrast, FCoR suppressed Arx through Foxo1 inhibition and Dnmt3a recruitment to Arx promoter and increased Arx promoter methylation. Our findings suggest that the FCoR-Foxo1 axis regulates pancreatic α-cell mass by suppressing Arx expression.

10.
Commun Biol ; 3(1): 479, 2020 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-32887925

RESUMO

Progesterone receptor membrane associated component 1 (PGRMC1) exhibits haem-dependent dimerization on cell membrane and binds to EGF receptor and cytochromes P450 to regulate cancer proliferation and chemoresistance. However, its physiological functions remain unknown. Herein, we demonstrate that PGRMC1 is required for adipogenesis, and its expression is significantly enhanced by insulin or thiazolidine, an agonist for PPARγ. The haem-dimerized PGRMC1 interacts with low-density lipoprotein receptors (VLDL-R and LDL-R) or GLUT4 to regulate their translocation to the plasma membrane, facilitating lipid uptake and accumulation, and de-novo fatty acid synthesis in adipocytes. These events are cancelled by CO through interfering with PGRMC1 dimerization. PGRMC1 expression in mouse adipose tissues is enhanced during obesity induced by a high fat diet. Furthermore, adipose tissue-specific PGRMC1 knockout in mice dramatically suppressed high-fat-diet induced adipocyte hypertrophy. Our results indicate a pivotal role of PGRMC1 in developing obesity through its metabolic regulation of lipids and carbohydrates in adipocytes.


Assuntos
Adipócitos/metabolismo , Progressão da Doença , Metabolismo dos Lipídeos , Proteínas de Membrana/metabolismo , Obesidade/patologia , Receptores de Progesterona/metabolismo , Células 3T3-L1 , Adipócitos/efeitos dos fármacos , Animais , Monóxido de Carbono/farmacologia , Diferenciação Celular/efeitos dos fármacos , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Glucose/metabolismo , Transportador de Glucose Tipo 4/metabolismo , Hipertrofia , Metabolismo dos Lipídeos/efeitos dos fármacos , Lipoproteínas LDL/metabolismo , Lipoproteínas VLDL/metabolismo , Camundongos , Modelos Biológicos , Obesidade/sangue , Transporte Proteico/efeitos dos fármacos , Receptores de LDL/metabolismo
11.
Dev Cell ; 4(1): 119-29, 2003 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-12530968

RESUMO

An outstanding question in adipocyte biology is how hormonal cues are relayed to the nucleus to activate the transcriptional program that promotes adipogenesis. The forkhead transcription factor Foxo1 is regulated by insulin via Akt-dependent phosphorylation and nuclear exclusion. We show that Foxo1 is induced in the early stages of adipocyte differentiation but that its activation is delayed until the end of the clonal expansion phase. Constitutively active Foxo1 prevents the differentiation of preadipocytes, while dominant-negative Foxo1 restores adipocyte differentiation of fibroblasts from insulin receptor-deficient mice. Further, Foxo1 haploinsufficiency protects from diet-induced diabetes in mice. We propose that Foxo1 plays an important role in the integration of hormone-activated signaling pathways with the complex transcriptional cascade that promotes adipocyte differentiation.


Assuntos
Adipócitos/citologia , Adipócitos/metabolismo , Diferenciação Celular , Fatores de Transcrição/metabolismo , Células 3T3 , Tecido Adiposo/crescimento & desenvolvimento , Tecido Adiposo/metabolismo , Animais , Tamanho Celular , Diabetes Mellitus/induzido quimicamente , Diabetes Mellitus/metabolismo , Gorduras na Dieta/administração & dosagem , Gorduras na Dieta/farmacologia , Fibroblastos , Proteína Forkhead Box O1 , Fatores de Transcrição Forkhead , Regulação da Expressão Gênica , Resistência à Insulina , Camundongos , Mutação/genética , Fosforilação , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Transporte Proteico , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptor de Insulina/genética , Receptor de Insulina/metabolismo , Fatores de Transcrição/genética
12.
J Clin Invest ; 116(9): 2473-83, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16917544

RESUMO

The forkhead transcription factor FoxO1 has been identified as a negative regulator of insulin/IGF-1 signaling. Its function is inhibited by phosphorylation and nuclear exclusion through a PI3K-dependent pathway. However, the structure/function relationship of FoxO1 has not been elucidated completely. In this study, we carried out mutation analysis of the FoxO1 coactivator-interacting LXXLL motif (amino acids 459-463). Expression of a 3A/LXXAA mutant, in which 3 Akt phosphorylation sites (T24, S253, and S316) and 2 leucine residues in the LXXLL motif (L462 and L463) were replaced by alanine, decreased both Igfbp-1 and G6Pase promoter activity and endogenous Igfbp-1 and G6Pase gene expression in simian virus 40-transformed (SV40-transformed) hepatocytes. Importantly, mutagenesis of the LXXLL motif eliminated FoxO1 interaction with the nicotinamide adenine dinucleotide-dependent (NAD-dependent) deacetylase sirtuin 1 (Sirt1), sustained the acetylated state of FoxO1, and made FoxO1 nicotinamide and resveratrol insensitive, supporting a role for this motif in Sirt1 binding. Furthermore, intravenous administration of adenovirus encoding 3A/LXXAA FoxO1 into Lepr db/db mice decreased fasting blood glucose levels and improved glucose tolerance and was accompanied by reduced G6Pase and Igfbp-1 gene expression and increased hepatic glycogen content. In conclusion, the LXXLL motif of FoxO1 may have an important role for its transcriptional activity and Sirt1 binding and should be a target site for regulation of gene expression of FoxO1 target genes and glucose metabolism in vivo.


Assuntos
Fatores de Transcrição Forkhead/metabolismo , Sirtuínas/metabolismo , Transcrição Gênica , 1-Metil-3-Isobutilxantina/farmacologia , Sequência de Aminoácidos , Animais , Caenorhabditis elegans/genética , Sequência Conservada , Dexametasona/farmacologia , Drosophila melanogaster/genética , Proteína Forkhead Box O1 , Fatores de Transcrição Forkhead/química , Fatores de Transcrição Forkhead/genética , Insulina/fisiologia , Leptina/genética , Camundongos , Mutagênese , Proteínas Recombinantes/metabolismo , Sirtuína 1
13.
J Cell Biol ; 162(4): 535-41, 2003 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-12925703

RESUMO

Insulin-like growth factors promote myoblast differentiation through phosphoinositol 3-kinase and Akt signaling. Akt substrates required for myogenic differentiation are unknown. Forkhead transcription factors of the forkhead box gene, group O (Foxo) subfamily are phosphorylated in an insulin-responsive manner by phosphatidylinositol 3-kinase-dependent kinases. Phosphorylation leads to nuclear exclusion and inactivation. We show that a constitutively active Foxo1 mutant inhibits differentiation of C2C12 cells and prevents myotube differentiation induced by constitutively active Akt. In contrast, a transcriptionally inactive mutant Foxo1 partially rescues inhibition of C2C12 differentiation mediated by wortmannin, but not by rapamycin, and is able to induce aggregation-independent myogenic conversion of teratocarcinoma cells. Inhibition of Foxo expression by siRNA resulted in more efficient differentiation, associated with increased myosin expression. These observations indicate that Foxo proteins are key effectors of Akt-dependent myogenesis.


Assuntos
Diferenciação Celular/fisiologia , Mioblastos/fisiologia , Somatomedinas/metabolismo , Fatores de Transcrição/genética , Androstadienos/farmacologia , Animais , Diferenciação Celular/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Proteína Forkhead Box O1 , Proteína Forkhead Box O3 , Fatores de Transcrição Forkhead , Camundongos , Mutação , Mioblastos/efeitos dos fármacos , Isoformas de Proteínas , Sirolimo/farmacologia , Fatores de Transcrição/biossíntese , Wortmanina
14.
Endocr J ; 56(1): 121-30, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-18946175

RESUMO

Salt inducible kinase (SIK) 1, a member of the AMP-activated kinase (AMPK) family, is activated by the AMPK-activator LKB1 which phosphorylates SIK1 at Thr182. The activated SIK1 then auto-phosphorylates its Ser186 located at the +4 position of Thr182. The phospho-Ser186 is essential for sustained activity of SIK1, which is maintained by sequential phosphorylation at Ser186-Thr182 by glycogen synthase kinase (GSK)-3beta. Meanwhile, SIK1 represses the transcription factor cAMP-response element binding protein (CREB) by phosphorylating its co-activator transducer of regulated CREB activity (TORC). Recently, histone deacetylase (HDAC) 5 was identified as a new substrate of SIK1. Inhibition of SIK1 or AMPK results in the stimulation of glyconeogensis in the liver by enhancing dephosphorylation of TORC2 followed by up-regulation of peroxisome proliferator-activated receptor coactivator (PGC)-1alpha gene expression. However, expression of the PGC-1alpha gene has been found to be repressed in LKB1-defective muscle cells. Our findings show that the AMPK agonist 5-aminoimidazole-4-carboxamide-1-beta-d-ribofuranoside (AICAR)-dependent expression of PGC-1alpha is diminished by inhibitors of GSK-3beta or SIKs in C2C12 myoblasts. Treatment with AICAR or the overexpression of SIK1 induces nuclear export of HDAC5 followed by the activation of myogenic transcription factor (MEF)-2C. The levels of phosphorylation at Thr182 and Ser186 of SIK1 in AICAR-treated C2C12 cells are elevated, and GSK-3beta enzyme purified from AICAR-treated cells shows enhanced phosphorylation activity of SIK1 in vitro. These observations suggest that GSK-3 beta and SIK1 may play important roles in the regulation of PGC-1alpha gene expression by inactivating HDAC5 followed by activation of MEF2C.


Assuntos
Aminoimidazol Carboxamida/análogos & derivados , Inibidores de Histona Desacetilases , Mioblastos/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/metabolismo , Ribonucleotídeos/farmacologia , Aminoimidazol Carboxamida/farmacologia , Animais , Linhagem Celular , Ativação Enzimática/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Quinase 3 da Glicogênio Sintase/metabolismo , Quinase 3 da Glicogênio Sintase/fisiologia , Glicogênio Sintase Quinase 3 beta , Histona Desacetilases/metabolismo , Fatores de Transcrição MEF2 , Camundongos , Mioblastos/metabolismo , Fatores de Regulação Miogênica/metabolismo , Fatores de Regulação Miogênica/fisiologia , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Fosforilação/efeitos dos fármacos , Ratos , Serina/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Treonina/metabolismo , Transativadores/genética , Transativadores/metabolismo , Fatores de Transcrição
15.
iScience ; 22: 81-96, 2019 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-31756626

RESUMO

Crosstalk between immunity and the thermogenic program has provided insight into metabolic energy regulation. Here, we generated thermogenic program-accelerating mice (T-QKO), in which Foxo1 is knockout and Foxo3 is hetero-knockout in CD4+ T cells. T-QKO exhibit lean phenotype under HFD due to increased energy expenditure. Cold exposure significantly increased expression of the thermogenic genes (Ppargc1a and Ucp1), Th2 cytokines (Il4 and Il13), and Th2 marker gene (Gata3) in subcutaneous adipose tissue (SC) of T-QKO. Furthermore, Ccr4 expression was significantly increased in Th2 cells of T-QKO, and cold exposure induced Ccl22 expression in SC, leading to increased accumulation of Th2 cell population in SC of T-QKO. These data reveal a mechanism by which cold exposure induces selective recruitment of Th2 cells into SC, leading to regulation of energy expenditure by generating beige adipocyte and suggest that inhibition of Foxo in T cells may support a strategy to prevent and treat obesity.

16.
iScience ; 12: 87-101, 2019 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-30677742

RESUMO

Obesity has become an explicit public health concern because of its relevance to metabolic syndrome. Evidence points to the significance of beige adipocytes in regulating energy expenditure. Here, using yeast two-hybrid screening, we show that Zfp238 is a Foxo1 co-repressor and that adipose-tissue-specific ablation of Zfp238 (Adipo-Zfp238KO) in mice leads to obesity, decreased energy expenditure, and insulin resistance under normal chow diet. Adipo-Zfp238KO inhibits induction of Ucp1 expression in subcutaneous adipose tissue upon cold exposure or CL316243, but not in brown adipose tissue. Furthermore, knockdown of Zfp238 in 3T3-L1 cells decreases Ucp1 expression in response to cool incubation or forskolin significantly compared with control cells. In contrast, overexpression of Zfp238 in 3T3-L1 cells significantly increases Ucp1 expression in response to forskolin. Finally, double knockdown of both Zfp238 and Foxo1 normalizes Ucp1 induction. These data suggest that Zfp238 in adipose tissue regulates the thermogenic program in cooperation with Foxo1.

17.
J Physiol Sci ; 69(5): 733-739, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31228099

RESUMO

Nesfatin-1 is a hypothalamic anorexigenic peptide processed from nucleobindin 2 (NUCB2). Central and peripheral administration of NUCB2/nesfatin-1 enhances glucose metabolism and insulin release. NUCB2/nesfatin-1 is also localized in pancreatic islets, while its function remains unknown. To explore the role of pancreatic ß-cell-produced NUCB2/nesfatin-1, we developed pancreatic ß-cell-specific NUCB2 knockout (ßNUCB2 KO) mice and NUCB2 gene knockdown (shNUCB2) MIN6 ß-cell line. In ßNUCB2 KO mice, casual blood glucose was elevated from 12 weeks of age. In a glucose tolerance test at 12 weeks, insulin secretion at 15 min was reduced and blood glucose at 2 h increased in ßNUCB2 KO mice fasted 8 h. In islets isolated from ßNUCB2 KO mice, high glucose-stimulated insulin secretion (GSIS) was impaired. In shNUCB2 MIN6 cells, GSIS was reduced and UCP-2 mRNA expression was elevated. These results show impaired GSIS possibly associated with UCP-2 overexpression in NUCB2-silenced ß-cells, suggesting that ß-cell-produced NUCB2/nesfatin-1 maintains GSIS and thereby glycemia.


Assuntos
Glicemia/metabolismo , Índice Glicêmico/fisiologia , Secreção de Insulina/fisiologia , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Nucleobindinas/metabolismo , Proteína Desacopladora 2/metabolismo , Animais , Linhagem Celular , Glucose/metabolismo , Teste de Tolerância a Glucose/métodos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Ratos
18.
FEBS Lett ; 582(1): 54-67, 2008 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-18022395

RESUMO

Forkhead transcription factors FoxOs are conserved beyond species and regulated by insulin signaling pathway. FoxOs have diverse functions on differentiation, proliferation and cell survival. In calorie restriction (CR) or starvation, FoxOs are in nucleus, active transcriptionally, and increase hepatic glucose production, decrease insulin secretion, increase food intake and cause degradation of skeletal muscle for supplying substrates for glucose production. However, even in insulin resistance due to excessive calorie intake, FoxOs are active and causes type 2 diabetes and hyperlipidemia. The understanding of molecular mechanism how FoxOs affect glucose or lipid metabolism will shed light on the novel therapy of type 2 diabetes and the metabolic syndrome.


Assuntos
Metabolismo/fisiologia , Fatores de Transcrição/fisiologia , Animais , Humanos , Insulina/fisiologia , Camundongos , Camundongos Knockout , Transdução de Sinais , Fatores de Transcrição/genética
19.
Sci Rep ; 8(1): 10415, 2018 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-29991705

RESUMO

Oxytocin neurons in the paraventricular nucleus (PVN) of hypothalamus regulate energy metabolism and reproduction. Plasma oxytocin concentration is reduced in obese subjects with insulin resistance. These findings prompted us to hypothesize that insulin serves to promote oxytocin release. This study examined whether insulin activates oxytocin neurons in the PVN, and explored the underlying signaling. We generated the mice deficient of 3-phosphoinositide-dependent protein kinase-1 (PDK1), a major signaling molecule particularly for insulin, specifically in oxytocin neurons (Oxy Pdk1 KO). Insulin increased cytosolic calcium concentration ([Ca2+]i) in oxytocin neurons with larger (≧25 µm) and smaller (<25 µm) diameters isolated from PVN in C57BL/6 mice. In PDK1 Oxy Pdk1 KO mice, in contrast, this effect of insulin to increase [Ca2+]i was markedly diminished in the larger-sized oxytocin neurons, while it was intact in the smaller-sized oxytocin neurons. Furthermore, intracerebroventricular insulin administration induced oxytocin release into plasma in Oxy Cre but not Oxy Pdk1 KO mice. These results demonstrate that insulin PDK1-dependently preferentially activates PVN magnocellular oxytocin neurons to release oxytocin into circulation, possibly serving as a mechanism for the interaction between metabolism and perinatal functions.


Assuntos
Proteínas Quinases Dependentes de 3-Fosfoinositídeo/genética , Metabolismo Energético/genética , Insulina/administração & dosagem , Ocitocina/genética , Animais , Sinalização do Cálcio/genética , Hipotálamo/metabolismo , Insulina/sangue , Camundongos , Camundongos Knockout , Neurônios/metabolismo , Ocitocina/sangue , Núcleo Hipotalâmico Paraventricular/metabolismo
20.
J Clin Invest ; 114(2): 214-23, 2004 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15254588

RESUMO

The role of different tissues in insulin action and their contribution to the pathogenesis of diabetes remain unclear. To examine this question, we have used genetic reconstitution experiments in mice. Genetic ablation of insulin receptors causes early postnatal death from diabetic ketoacidosis. We show that combined restoration of insulin receptor function in brain, liver, and pancreatic beta cells rescues insulin receptor knockout mice from neonatal death, prevents diabetes in a majority of animals, and normalizes adipose tissue content, lifespan, and reproductive function. In contrast, mice with insulin receptor expression limited to brain or liver and pancreatic beta cells are rescued from neonatal death, but develop lipoatrophic diabetes and die prematurely. These data indicate, surprisingly, that insulin receptor signaling in noncanonical insulin target tissues is sufficient to maintain fuel homeostasis and prevent diabetes.


Assuntos
Insulina/metabolismo , Receptor de Insulina/metabolismo , Transdução de Sinais/fisiologia , Transgenes , Tecido Adiposo/anatomia & histologia , Tecido Adiposo/metabolismo , Animais , Animais Recém-Nascidos , Peso Corporal , Encéfalo/fisiologia , Glucose/metabolismo , Ilhotas Pancreáticas/citologia , Ilhotas Pancreáticas/fisiologia , Fígado/fisiologia , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Receptor de Insulina/genética , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA