Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 186(22): 4898-4919.e25, 2023 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-37827155

RESUMO

Expansions of repeat DNA tracts cause >70 diseases, and ongoing expansions in brains exacerbate disease. During expansion mutations, single-stranded DNAs (ssDNAs) form slipped-DNAs. We find the ssDNA-binding complexes canonical replication protein A (RPA1, RPA2, and RPA3) and Alternative-RPA (RPA1, RPA3, and primate-specific RPA4) are upregulated in Huntington disease and spinocerebellar ataxia type 1 (SCA1) patient brains. Protein interactomes of RPA and Alt-RPA reveal unique and shared partners, including modifiers of CAG instability and disease presentation. RPA enhances in vitro melting, FAN1 excision, and repair of slipped-CAGs and protects against CAG expansions in human cells. RPA overexpression in SCA1 mouse brains ablates expansions, coincident with decreased ATXN1 aggregation, reduced brain DNA damage, improved neuron morphology, and rescued motor phenotypes. In contrast, Alt-RPA inhibits melting, FAN1 excision, and repair of slipped-CAGs and promotes CAG expansions. These findings suggest a functional interplay between the two RPAs where Alt-RPA may antagonistically offset RPA's suppression of disease-associated repeat expansions, which may extend to other DNA processes.


Assuntos
Proteína de Replicação A , Expansão das Repetições de Trinucleotídeos , Animais , Humanos , Camundongos , DNA/genética , Reparo de Erro de Pareamento de DNA , Doença de Huntington/genética , Proteínas/genética , Ataxias Espinocerebelares/genética , Proteína de Replicação A/metabolismo
2.
EMBO Rep ; 24(4): e56616, 2023 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-36852954

RESUMO

Myotonic dystrophy type 1 (DM1) is the most common muscular dystrophy in adults. It is caused by the excessive expansion of noncoding CTG repeats, which when transcribed affects the functions of RNA-binding factors with adverse effects on alternative splicing, processing, and stability of a large set of muscular and cardiac transcripts. Among these effects, inefficient processing and down-regulation of muscle- and heart-specific miRNA, miR-1, have been reported in DM1 patients, but the impact of reduced miR-1 on DM1 pathogenesis has been unknown. Here, we use Drosophila DM1 models to explore the role of miR-1 in cardiac dysfunction in DM1. We show that miR-1 down-regulation in the heart leads to dilated cardiomyopathy (DCM), a DM1-associated phenotype. We combined in silico screening for miR-1 targets with transcriptional profiling of DM1 cardiac cells to identify miR-1 target genes with potential roles in DCM. We identify Multiplexin (Mp) as a new cardiac miR-1 target involved in DM1. Mp encodes a collagen protein involved in cardiac tube formation in Drosophila. Mp and its human ortholog Col15A1 are both highly enriched in cardiac cells of DCM-developing DM1 flies and in heart samples from DM1 patients with DCM, respectively. When overexpressed in the heart, Mp induces DCM, whereas its attenuation rescues the DCM phenotype of aged DM1 flies. Reduced levels of miR-1 and consecutive up-regulation of its target Mp/Col15A1 might be critical in DM1-associated DCM.


Assuntos
Cardiomiopatia Dilatada , MicroRNAs , Distrofia Miotônica , Adulto , Animais , Humanos , Idoso , Distrofia Miotônica/genética , Distrofia Miotônica/patologia , Cardiomiopatia Dilatada/genética , Coração , MicroRNAs/genética , MicroRNAs/metabolismo , Drosophila/genética , Drosophila/metabolismo
3.
Genes Dev ; 31(11): 1122-1133, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28698297

RESUMO

Myotonic dystrophy type 1 (DM1) is a CTG microsatellite expansion (CTGexp) disorder caused by expression of CUGexp RNAs. These mutant RNAs alter the activities of RNA processing factors, including MBNL proteins, leading to re-expression of fetal isoforms in adult tissues and DM1 pathology. While this pathogenesis model accounts for adult-onset disease, the molecular basis of congenital DM (CDM) is unknown. Here, we test the hypothesis that disruption of developmentally regulated RNA alternative processing pathways contributes to CDM disease. We identify prominent alternative splicing and polyadenylation abnormalities in infant CDM muscle, and, although most are also misregulated in adult-onset DM1, dysregulation is significantly more severe in CDM. Furthermore, analysis of alternative splicing during human myogenesis reveals that CDM-relevant exons undergo prenatal RNA isoform transitions and are predicted to be disrupted by CUGexp-associated mechanisms in utero. To test this possibility and the contribution of MBNLs to CDM pathogenesis, we generated mouse Mbnl double (Mbnl1; Mbnl2) and triple (Mbnl1; Mbnl2; Mbnl3) muscle-specific knockout models that recapitulate the congenital myopathy, gene expression, and spliceopathy defects characteristic of CDM. This study demonstrates that RNA misprocessing is a major pathogenic factor in CDM and provides novel mouse models to further examine roles for cotranscriptional/post-transcriptional gene regulation during development.


Assuntos
Desenvolvimento Muscular/genética , Distrofia Miotônica/genética , Distrofia Miotônica/fisiopatologia , Processamento Pós-Transcricional do RNA/genética , Splicing de RNA , Proteínas de Ligação a RNA/genética , Animais , Proteínas de Transporte/genética , Células Cultivadas , Pré-Escolar , Proteínas de Ligação a DNA/genética , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento/genética , Técnicas de Inativação de Genes , Humanos , Lactente , Camundongos , Proteínas de Ligação a RNA/metabolismo
4.
Bioconjug Chem ; 34(12): 2187-2193, 2023 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-37948852

RESUMO

Understanding the pharmacokinetics of drug candidates of interest in the brain and evaluating drug delivery to the brain are important for developing drugs targeting the brain. Previously, we demonstrated that a CAG repeat-binding small molecule, naphthyridine-azaquinolone (NA), resulted in repeat contraction in mouse models of dentatorubral-pallidoluysian atrophy and Huntington's disease caused by aberrant expansion of CAG repeats. However, the intracerebral distribution and drug deliverability of NA remain unclear. Here, we report three-dimensional whole-brain imaging of an externally administered small molecule using tissue clearing and light sheet fluorescence microscopy (LSFM). We designed and synthesized an Alexa594-labeled NA derivative with a primary amine for whole-brain imaging (NA-Alexa594-NH2), revealing the intracerebral distribution of NA-Alexa594-NH2 after intraparenchymal and intracerebroventricular administrations by whole-brain imaging combined with tissue clearing and LSFM. We also clarified that intranasally administered NA-Alexa594-NH2 was delivered into the brain via multiple nose-to-brain pathways by tracking the time-dependent change in the intracerebral distribution. Whole-brain imaging of small molecules by tissue clearing and LSFM is useful for elucidating not only the intracerebral distribution but also the drug delivery pathways into the brain.


Assuntos
Encéfalo , Neuroimagem , Camundongos , Animais , Encéfalo/diagnóstico por imagem
5.
Neurobiol Dis ; 163: 105604, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34968706

RESUMO

Dentatorubral-pallidoluysian atrophy (DRPLA) is a devastating genetic disease presenting myoclonus, epilepsy, ataxia, and dementia. DRPLA is caused by the expansion of a CAG repeat in the ATN1 gene. Aggregation of the polyglutamine-expanded ATN1 protein causes neuro-degeneration of the dentatorubral and pallidoluysian systems. The expanded CAG repeats are unstable, and ongoing repeat expansions contribute to disease onset, progression, and severity. Inducing contractions of expanded repeats can be a means to treat DRPLA, for which no disease-modifying or curative therapies exist at present. Previously, we characterized a small molecule, naphthyridine-azaquinolone (NA), which binds to CAG slip-out structures and induces repeat contraction in Huntington's disease mice. Here, we demonstrate that long-term intracerebroventricular infusion of NA leads to repeat contraction, reductions in mutant ATN1 aggregation, and improved motor phenotype in a murine model of DRPLA. Furthermore, NA-induced contraction resulted in the modification of repeat-length-dependent dysregulation of gene expression profiles in DRPLA mice. Our study reveals the therapeutic potential of repeat contracting small molecules for repeat expansion disorders, such as DRPLA.


Assuntos
Destreza Motora/fisiologia , Epilepsias Mioclônicas Progressivas/fisiopatologia , Proteínas do Tecido Nervoso/genética , Repetições de Trinucleotídeos , Animais , Modelos Animais de Doenças , Camundongos , Destreza Motora/efeitos dos fármacos , Epilepsias Mioclônicas Progressivas/genética , Naftiridinas/farmacologia , Fenótipo , Agregados Proteicos/efeitos dos fármacos , Quinolonas/farmacologia
6.
Proc Natl Acad Sci U S A ; 116(42): 20991-21000, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31570586

RESUMO

A CTG repeat expansion in the DMPK gene is the causative mutation of myotonic dystrophy type 1 (DM1). Transcription of the expanded CTG repeat produces toxic gain-of-function CUG RNA, leading to disease symptoms. A screening platform that targets production or stability of the toxic CUG RNA in a selective manner has the potential to provide new biological and therapeutic insights. A DM1 HeLa cell model was generated that stably expresses a toxic r(CUG)480 and an analogous r(CUG)0 control from DMPK and was used to measure the ratio-metric level of r(CUG)480 versus r(CUG)0. This DM1 HeLa model recapitulates pathogenic hallmarks of DM1, including CUG ribonuclear foci and missplicing of pre-mRNA targets of the muscleblind (MBNL) alternative splicing factors. Repeat-selective screening using this cell line led to the unexpected identification of multiple microtubule inhibitors as hits that selectively reduce r(CUG)480 levels and partially rescue MBNL-dependent missplicing. These results were validated by using the Food and Drug Administration-approved clinical microtubule inhibitor colchicine in DM1 mouse and primary patient cell models. The mechanism of action was found to involve selective reduced transcription of the CTG expansion that we hypothesize to involve the LINC (linker of nucleoskeleton and cytoskeleton) complex. The unanticipated identification of microtubule inhibitors as selective modulators of toxic CUG RNA opens research directions for this form of muscular dystrophy and may shed light on the biology of CTG repeat expansion and inform therapeutic avenues. This approach has the potential to identify modulators of expanded repeat-containing gene expression for over 30 microsatellite expansion disorders.


Assuntos
Avaliação Pré-Clínica de Medicamentos/métodos , Microtúbulos/efeitos dos fármacos , Distrofia Miotônica/genética , RNA/genética , Bibliotecas de Moléculas Pequenas/farmacologia , Expansão das Repetições de Trinucleotídeos/efeitos dos fármacos , Animais , Células HeLa , Humanos , Camundongos , Camundongos Transgênicos , Microtúbulos/genética , Microtúbulos/metabolismo , Distrofia Miotônica/enzimologia , Miotonina Proteína Quinase/genética , Miotonina Proteína Quinase/metabolismo , RNA/química , RNA/metabolismo
7.
Int J Mol Sci ; 23(4)2022 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-35216455

RESUMO

Myotonic dystrophy (DM) is a dominantly inherited multisystemic disorder affecting various organs, such as skeletal muscle, heart, the nervous system, and the eye. Myotonic dystrophy type 1 (DM1) and type 2 (DM2) are caused by expanded CTG and CCTG repeats, respectively. In both forms, the mutant transcripts containing expanded repeats aggregate as nuclear foci and sequester several RNA-binding proteins, resulting in alternative splicing dysregulation. Although certain alternative splicing events are linked to the clinical DM phenotypes, the molecular mechanisms underlying multiple DM symptoms remain unclear. Interestingly, multi-systemic DM manifestations, including muscle weakness, cognitive impairment, cataract, and frontal baldness, resemble premature aging. Furthermore, cellular senescence, a critical contributor to aging, is suggested to play a key role in DM cellular pathophysiology. In particular, several senescence inducers including telomere shortening, mitochondrial dysfunction, and oxidative stress and senescence biomarkers such as cell cycle inhibitors, senescence-associated secretory phenotype, chromatin reorganization, and microRNA have been implicated in DM pathogenesis. In this review, we focus on the clinical similarities between DM and aging, and summarize the involvement of cellular senescence in DM and the potential application of anti-aging DM therapies.


Assuntos
Distrofia Miotônica , Processamento Alternativo , Senescência Celular/genética , Humanos , Músculo Esquelético/metabolismo , Distrofia Miotônica/metabolismo , Proteínas de Ligação a RNA/metabolismo
8.
Mov Disord ; 36(2): 298-305, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33284473

RESUMO

Recent technological advancements in genetic analysis have allowed for the consecutive discovery and elucidation of repeat expansion disorders: diseases caused by the abnormal expansion of repeat sequences in the genome. Many of these repeat expansion disorders are neurodegenerative movement disorders. Radical cures for these disorders have yet to be established. Although conventional treatments for repeat expansion disorders have mainly targeted the abnormal mRNA and proteins encoded by the affected genes, therapeutic approaches targeting repeat DNA, the root cause of repeat disorders, is also being explored in current research. In particular, a small molecule has been found that binds to abnormally expanded CAG repeats, the cause of Huntington's disease, and shortens them. Such small molecules targeting nucleic acids are expected to be developed into groundbreaking therapeutic drugs capable of ameliorating the symptoms of repeat expansion disorders and preventing their onset. © 2020 International Parkinson and Movement Disorder Society.


Assuntos
Doença de Huntington , Genoma , Humanos , Doença de Huntington/genética , Sequências Repetitivas de Ácido Nucleico , Expansão das Repetições de Trinucleotídeos/genética
9.
Chemistry ; 26(63): 14305-14309, 2020 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-32449537

RESUMO

Expanded CUG repeat RNA in the dystrophia myotonia protein kinase (DMPK) gene causes myotonic dystrophy type 1 (DM1) and sequesters RNA processing proteins, such as the splicing factor muscleblind-like 1 protein (MBNL1). Sequestration of splicing factors results in the mis-splicing of some pre-mRNAs. Small molecules that rescue the mis-splicing in the DM1 cells have drawn attention as potential drugs to treat DM1. Herein we report a new molecule JM642 consisted of two 1,3-diaminoisoquinoline chromophores having an auxiliary aromatic unit at the C5 position. JM642 alternates the splicing pattern of the pre-mRNA of the Ldb3 gene in the DM1 cell model and Clcn1 and Atp2a1 genes in the DM1 mouse model. In vitro binding analysis by surface plasmon resonance (SPR) assay to the r(CUG) repeat and disruption of ribonuclear foci in the DM1 cell model suggested the binding of JM642 to the expanded r(CUG) repeat in vivo, eventually rescue the mis-splicing.


Assuntos
Distrofia Miotônica , Quinolinas , Splicing de RNA , Animais , Canais de Cloreto/genética , Canais de Cloreto/metabolismo , Dimerização , Camundongos , Distrofia Miotônica/tratamento farmacológico , Distrofia Miotônica/genética , Quinolinas/química , Quinolinas/farmacologia , RNA/metabolismo , Splicing de RNA/efeitos dos fármacos , Proteínas de Ligação a RNA/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/genética , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Expansão das Repetições de Trinucleotídeos
10.
Methods ; 167: 78-91, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31078794

RESUMO

Much recent attention has been focused on small organic molecules binding to non-canonical structures of nucleic acids, especially, RNA. The Human Genome Project and the ENCODE (encyclopedia of DNA elements) project revealed that more than 75% of the human genome is transcribed into RNA, while only ∼3% of the human genome encodes a protein. These non-protein-coding RNAs are thought to play significant roles in many cellular processes and are promising targets for drug discovery. Emerging roles of the non-coding RNAs in a variety of diseases provides enormous opportunities for pharmaceutical research on developing drugs targeting undruggable and rare diseases. During the last two decades, our laboratory has focused attention on small molecules binding to non-canonical DNA and RNA structures, especially to mismatched base pairs. Mismatch binding ligands (MBLs) we have developed are synthetic molecules designed in silico based on the hypothesis of hydrogen-bonding and semi-intercalation to DNA and RNA. Most of MBLs consists of two heterocycles having hydrogen bonding surfaces fully or partially complementary to that of nucleotide bases. In our design, each heterocycle binds to one of the mismatched bases by hydrogen bonding to form pseudo-base pairs, which would be stacked with the adjacent base pairs. The hypothesis allows us in principle to design small molecules binding to any mismatched base pairs, but it turned out not to be the case in reality. However, we have so far succeeded in developing several MBLs binding to DNA and RNA motifs of biological significance. In this review, we shall describe the hypothesis of molecular design of MBLs and its outcome regarding RNA targeting.


Assuntos
DNA/ultraestrutura , Conformação de Ácido Nucleico/efeitos dos fármacos , RNA/ultraestrutura , Bibliotecas de Moléculas Pequenas/química , Pareamento de Bases/genética , Simulação por Computador , DNA/efeitos dos fármacos , DNA/genética , Humanos , Ligação de Hidrogênio , Ligantes , Motivos de Nucleotídeos/genética , RNA/efeitos dos fármacos , RNA/genética , Bibliotecas de Moléculas Pequenas/farmacologia
12.
Muscle Nerve ; 59(5): 577-582, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30681157

RESUMO

INTRODUCTION: The Myotonic Dystrophy Health Index (MDHI) is a disease-specific, patient-reported outcome measure. The objective of this study was to translate, evaluate, and validate a Japanese version of the MDHI (MDHI-J). METHODS: We utilized forward and backward translations and qualitative interviews with 11 myotonic dystrophy type 1 (DM1) participants. We subsequently tested the internal consistency, test-retest reliability, concurrent validity against muscle strength, and 3 quality-of-life measures, and the known-groups validity of the MDHI-J with 60 adult patients. RESULTS: The MDHI-J was found to be culturally appropriate, comprehensive, and clinically relevant. The MDHI-J and its subscales had high internal consistency (mean Cronbach's α = 0.91), test-retest reliability (intraclass coefficient 0.678-0.915), and concurrent validity (Spearman's ρ - 0.869 to 0.904). MDHI-J scores were strongly associated with employment, duration of symptoms, and modified Rankin Scale. DISCUSSION: The MDHI-J is suitable and valid to measure patient-reported disease burden in adult Japanese patients with DM1. Muscle Nerve 59:577-577, 2019.


Assuntos
Nível de Saúde , Distrofia Miotônica/fisiopatologia , Qualidade de Vida , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Força Muscular , Medidas de Resultados Relatados pelo Paciente , Reprodutibilidade dos Testes , Índice de Gravidade de Doença , Inquéritos e Questionários , Traduções
13.
Chemistry ; 24(68): 18115-18122, 2018 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-30302858

RESUMO

Expanded r(CUG) repeats are the cause of the neurological disorder myotonic dystrophy type 1 (DM1). The pathological features of DM1 include the formation of ribonuclear foci containing expanded r(CUG) repeats, which sequester the MBNL1 protein and lead to the misregulation of alternative pre-mRNA splicing. Small molecules that bind to the r(CUG) repeats and improve alternative splicing have therapeutic potential in the treatment of DM1. Herein, the synthesis of DDAP (a dimeric form of the CUG-binding molecule DAP reported previously), its binding properties to r(CUG) repeats, and its effect on the misregulation of splicing are reported. The surface plasmon resonance assay, circular dichroism spectra, and ESI-TOF mass spectrometry results confirmed the binding of DDAP to r(CUG)9 repeats. Studies on a DM1 cell model and a DM1 mouse model revealed that DDAP was partially effective in the recovery of the pre-mRNA splicing defects. The mechanism underlying this recovery was studied in vitro through a competitive binding assay, and suggested that DDAP could interfere with the binding of MBNL1 to r(CUG) repeats in a concentration-dependent manner.


Assuntos
Processamento Alternativo/efeitos dos fármacos , Distrofia Miotônica/tratamento farmacológico , Distrofia Miotônica/genética , Fenantrolinas/química , Fenantrolinas/farmacologia , Animais , Proteínas de Ligação a DNA/genética , Modelos Animais de Doenças , Descoberta de Drogas , Humanos , Ligantes , Camundongos , RNA Mensageiro/genética , Proteínas de Ligação a RNA/genética
14.
Nature ; 488(7409): 111-5, 2012 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-22859208

RESUMO

Antisense oligonucleotides (ASOs) hold promise for gene-specific knockdown in diseases that involve RNA or protein gain-of-function effects. In the hereditary degenerative disease myotonic dystrophy type 1 (DM1), transcripts from the mutant allele contain an expanded CUG repeat and are retained in the nucleus. The mutant RNA exerts a toxic gain-of-function effect, making it an appropriate target for therapeutic ASOs. However, despite improvements in ASO chemistry and design, systemic use of ASOs is limited because uptake in many tissues, including skeletal and cardiac muscle, is not sufficient to silence target messenger RNAs. Here we show that nuclear-retained transcripts containing expanded CUG (CUG(exp)) repeats are unusually sensitive to antisense silencing. In a transgenic mouse model of DM1, systemic administration of ASOs caused a rapid knockdown of CUG(exp) RNA in skeletal muscle, correcting the physiological, histopathologic and transcriptomic features of the disease. The effect was sustained for up to 1 year after treatment was discontinued. Systemically administered ASOs were also effective for muscle knockdown of Malat1, a long non-coding RNA (lncRNA) that is retained in the nucleus. These results provide a general strategy to correct RNA gain-of-function effects and to modulate the expression of expanded repeats, lncRNAs and other transcripts with prolonged nuclear residence.


Assuntos
Núcleo Celular/genética , Inativação Gênica , Distrofia Miotônica/genética , Distrofia Miotônica/terapia , RNA/antagonistas & inibidores , RNA/genética , Alelos , Animais , Sequência de Bases , Núcleo Celular/efeitos dos fármacos , Modelos Animais de Doenças , Técnicas de Silenciamento de Genes , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos mdx , Camundongos Transgênicos , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Distrofia Miotônica/patologia , Distrofia Miotônica/fisiopatologia , Miotonina Proteína Quinase , Oligonucleotídeos Antissenso/genética , Oligonucleotídeos Antissenso/farmacologia , Oligonucleotídeos Antissenso/uso terapêutico , Proteínas Serina-Treonina Quinases/genética , RNA/metabolismo , RNA Longo não Codificante , RNA Mensageiro/antagonistas & inibidores , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA não Traduzido/genética , Ribonuclease H/metabolismo , Transcriptoma/efeitos dos fármacos , Transcriptoma/genética , Expansão das Repetições de Trinucleotídeos/genética
15.
Nucleic Acids Res ; 42(10): 6591-602, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24799433

RESUMO

Myotonic dystrophy type 1 (DM1) is a dominantly inherited neuromuscular disorder resulting from expression of RNA containing an expanded CUG repeat (CUG(exp)). The pathogenic RNA is retained in nuclear foci. Poly-(CUG) binding proteins in the Muscleblind-like (MBNL) family are sequestered in foci, causing misregulated alternative splicing of specific pre-mRNAs. Inhibitors of MBNL1-CUG(exp) binding have been shown to restore splicing regulation and correct phenotypes in DM1 models. We therefore conducted a high-throughput screen to identify novel inhibitors of MBNL1-(CUG)12 binding. The most active compound was lomofungin, a natural antimicrobial agent. We found that lomofungin undergoes spontaneous dimerization in DMSO, producing dilomofungin, whose inhibition of MBNL1-(CUG)12 binding was 17-fold more potent than lomofungin itself. However, while dilomofungin displayed the desired binding characteristics in vitro, when applied to cells it produced a large increase of CUG(exp) RNA in nuclear foci, owing to reduced turnover of the CUG(exp) transcript. By comparison, the monomer did not induce CUG(exp) accumulation in cells and was more effective at rescuing a CUG(exp)-induced splicing defect. These results support the feasibility of high-throughput screens to identify compounds targeting toxic RNA, but also demonstrate that ligands for repetitive sequences may have unexpected effects on RNA decay.


Assuntos
Fenazinas/farmacologia , Proteínas de Ligação a RNA/metabolismo , RNA/química , RNA/metabolismo , Regiões 3' não Traduzidas , Processamento Alternativo/efeitos dos fármacos , Dimerização , Humanos , Fenazinas/química , Fenazinas/metabolismo , Estabilidade de RNA/efeitos dos fármacos , Sequências Repetitivas de Ácido Nucleico
16.
PLoS Genet ; 9(12): e1003866, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24367268

RESUMO

Slipped-strand DNAs, formed by out-of-register mispairing of repeat units on complementary strands, were proposed over 55 years ago as transient intermediates in repeat length mutations, hypothesized to cause at least 40 neurodegenerative diseases. While slipped-DNAs have been characterized in vitro, evidence of slipped-DNAs at an endogenous locus in biologically relevant tissues, where instability varies widely, is lacking. Here, using an anti-DNA junction antibody and immunoprecipitation, we identify slipped-DNAs at the unstable trinucleotide repeats (CTG)n•(CAG)n of the myotonic dystrophy disease locus in patient brain, heart, muscle and other tissues, where the largest expansions arise in non-mitotic tissues such as cortex and heart, and are smallest in the cerebellum. Slipped-DNAs are shown to be present on the expanded allele and in chromatinized DNA. Slipped-DNAs are present as clusters of slip-outs along a DNA, with each slip-out having 1-100 extrahelical repeats. The allelic levels of slipped-DNA containing molecules were significantly greater in the heart over the cerebellum (relative to genomic equivalents of pre-IP input DNA) of a DM1 individual; an enrichment consistent with increased allelic levels of slipped-DNA structures in tissues having greater levels of CTG instability. Surprisingly, this supports the formation of slipped-DNAs as persistent mutation products of repeat instability, and not merely as transient mutagenic intermediates. These findings further our understanding of the processes of mutation and genetic variation.


Assuntos
Anticorpos Antinucleares/genética , DNA/genética , Distrofia Miotônica/genética , Expansão das Repetições de Trinucleotídeos/genética , Cromatina/genética , DNA/química , Humanos , Mutação , Distrofia Miotônica/patologia , Conformação de Ácido Nucleico , Distribuição Tecidual
17.
Hum Mol Genet ; 21(6): 1312-24, 2012 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-22140091

RESUMO

Myotonic dystrophy type 1 and type 2 (DM1 and DM2) are genetic diseases in which mutant transcripts containing expanded CUG or CCUG repeats cause cellular dysfunction by altering the processing or metabolism of specific mRNAs and miRNAs. The toxic effects of mutant RNA are mediated partly through effects on proteins that regulate alternative splicing. Here we show that alternative splicing of exon 29 (E29) of Ca(V)1.1, a calcium channel that controls skeletal muscle excitation-contraction coupling, is markedly repressed in DM1 and DM2. The extent of E29 skipping correlated with severity of weakness in tibialis anterior muscle of DM1 patients. Two splicing factors previously implicated in DM1, MBNL1 and CUGBP1, participated in the regulation of E29 splicing. In muscle fibers of wild-type mice, the Ca(V)1.1 channel conductance and voltage sensitivity were increased by splice-shifting oligonucleotides that induce E29 skipping. In contrast to human DM1, expression of CUG-expanded RNA caused only a modest increase in E29 skipping in mice. However, forced skipping of E29 in these mice, to levels approaching those observed in human DM1, aggravated the muscle pathology as evidenced by increased central nucleation. Together, these results indicate that DM-associated splicing defects alter Ca(V)1.1 function, with potential for exacerbation of myopathy.


Assuntos
Processamento Alternativo , Canais de Cálcio Tipo L/fisiologia , Cálcio/metabolismo , Ativação do Canal Iônico/fisiologia , Debilidade Muscular/etiologia , Transtornos Miotônicos/fisiopatologia , Distrofia Miotônica/fisiopatologia , Animais , Proteínas CELF1 , Células Cultivadas , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Éxons/genética , Regulação da Expressão Gênica , Humanos , Immunoblotting , Camundongos , Camundongos Transgênicos , Morfolinos/farmacologia , Debilidade Muscular/metabolismo , Debilidade Muscular/patologia , Músculo Esquelético/citologia , Músculo Esquelético/metabolismo , Mioblastos/citologia , Mioblastos/metabolismo , Técnicas de Patch-Clamp , RNA Mensageiro/genética , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa
18.
Ann Neurol ; 74(6): 862-72, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23929620

RESUMO

OBJECTIVE: To develop RNA splicing biomarkers of disease severity and therapeutic response in myotonic dystrophy type 1 (DM1) and type 2 (DM2). METHODS: In a discovery cohort, we used microarrays to perform global analysis of alternative splicing in DM1 and DM2. The newly identified splicing changes were combined with previous data to create a panel of 50 putative splicing defects. In a validation cohort of 50 DM1 subjects, we measured the strength of ankle dorsiflexion (ADF) and then obtained a needle biopsy of tibialis anterior (TA) to analyze splice events in muscle RNA. The specificity of DM-associated splicing defects was assessed in disease controls. The CTG expansion size in muscle tissue was determined by Southern blot. The reversibility of splicing defects was assessed in transgenic mice by using antisense oligonucleotides to reduce levels of toxic RNA. RESULTS: Forty-two splicing defects were confirmed in TA muscle in the validation cohort. Among these, 20 events showed graded changes that correlated with ADF weakness. Five other splice events were strongly affected in DM1 subjects with normal ADF strength. Comparison to disease controls and mouse models indicated that splicing changes were DM-specific, mainly attributable to MBNL1 sequestration, and reversible in mice by targeted knockdown of toxic RNA. Splicing defects and weakness were not correlated with CTG expansion size in muscle tissue. INTERPRETATION: Alternative splicing changes in skeletal muscle may serve as biomarkers of disease severity and therapeutic response in myotonic dystrophy.


Assuntos
Processamento Alternativo , Distrofia Miotônica/genética , Adolescente , Adulto , Idoso , Animais , Biomarcadores , Estudos de Coortes , Proteínas de Ligação a DNA/genética , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Pessoa de Meia-Idade , Músculo Esquelético/patologia , Músculo Esquelético/fisiopatologia , Transtornos Miotônicos/genética , Transtornos Miotônicos/patologia , Transtornos Miotônicos/fisiopatologia , Distrofia Miotônica/patologia , Distrofia Miotônica/fisiopatologia , Oligonucleotídeos Antissenso/genética , Proteínas de Ligação a RNA/genética , Índice de Gravidade de Doença , Adulto Jovem
19.
Nucleic Acids Res ; 40(13): 6380-90, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22492623

RESUMO

The myotonic dystrophies (DM) are human diseases in which the accumulation of toxic RNA (CUG or CCUG) repeats in the cell causes sequestration of splicing factors, including MBNL1, leading to clinical symptoms such as muscle wasting and myotonia. We previously used Dynamic Combinatorial Chemistry to identify the first compounds known to inhibit (CUG)-MBNL1 binding in vitro. We now report transformation of those compounds into structures with activity in vivo. Introduction of a benzo[g]quinoline substructure previously unknown in the context of RNA recognition, as well as other modifications, provided several molecules with enhanced binding properties, including compounds with strong selectivity for CUG repeats over CAG repeats or CAG-CUG duplex RNA. Compounds readily penetrate cells, and improve luciferase activity in a mouse myoblast assay in which enzyme function is coupled to a release of nuclear CUG-RNA retention. Most importantly, two compounds are able to partially restore splicing in a mouse model of DM1.


Assuntos
Distrofia Miotônica/genética , Quinolinas/farmacologia , RNA/química , Repetições de Trinucleotídeos , Animais , Linhagem Celular , Técnicas de Química Combinatória , Cinética , Camundongos , Quinolinas/química , Quinolinas/metabolismo , Splicing de RNA , Proteínas de Ligação a RNA/metabolismo , Termodinâmica
20.
Rinsho Byori ; 62(3): 246-54, 2014 Mar.
Artigo em Japonês | MEDLINE | ID: mdl-24800500

RESUMO

Myotonic dystrophy (DM), the most common hereditary muscle disease in adults, is caused by the unstable genomic expansion of simple sequence repeats. This disease is characterized by myotonia and various multisystemic complications, most commonly those of the cardiac, endocrine, and central nervous systems. The cardiac abnormalities, especially cardiac conduction defects, significantly contribute to morbidity and mortality in DM patients. Therefore, understanding the pathophysiology of cardiac conduction defects in DM is important. The pathomechanism of DM has been thoroughly investigated. The mutant RNA transcripts containing the expanded repeat give rise to a toxic gain-of-function by perturbing splicing factors in the nucleus, leading to the misregulation of alternative pre-mRNA splicing. In particular, several studies, including ours, have shown that myotonia is caused by alternative splicing of the CLCN1 gene coding the voltage-gated chloride channel in skeletal muscle through an "RNA-dominant mechanism". Since the aberrantly spliced isoform does not seem to form a functional channel, the feature of skeletal muscle in DM can be interpreted as a "channelopathy" caused by reduced chloride channel protein. Similarly, we recently identified a misregulation of alternative splicing in an ion channel gene which is known to be responsible for arrhythmic disease showing Mendelian inheritance. Here, we review the cardiac manifestation and RNA-dominant mechanism of DM, and discuss the possible pathophysiology of cardiac conduction defects by referring to hereditary arrhythmic diseases, such as long QT syndrome and Brugada syndrome.


Assuntos
Arritmias Cardíacas/metabolismo , Sistema de Condução Cardíaco/anormalidades , Canais Iônicos/metabolismo , Miotonia/genética , Distrofia Miotônica/genética , Animais , Arritmias Cardíacas/genética , Síndrome de Brugada , Doença do Sistema de Condução Cardíaco , Canais de Cloreto/genética , Sistema de Condução Cardíaco/metabolismo , Humanos , Canais Iônicos/genética , Miotonia/metabolismo , Distrofia Miotônica/metabolismo , Splicing de RNA/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA