Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Inorg Chem ; 55(3): 1142-53, 2016 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-26789927

RESUMO

The reactions of tetrakis(dimethylamido)titanium(IV) [Ti(NMe2)4] with three different imidazolin-2-imines (Im(R)NH; R = tert-butyl (tBu), mesityl (Mes), and 2,6-diisopropylphenyl (Dipp)) afforded the corresponding titanium imidazolin-2-iminato complexes [(Im(R)N)Ti(NMe2)3] (R = tBu, 1a; R = Mes, 1b; R = Dipp, 1c). Treatment of complex 1a with two different carbodiimides [R'N═C═NR'; R' = cyclohexyl (Cy) and isopropyl (iPr)] resulted in the formation of imidazolin-2-iminato titanium mono(guanidinate) complex of the type [(Im(R)N)Ti(R'NC(NMe2)NR') (NMe2)2 (R' = iPr; R = tBu (2a), R = Dipp (2c); R' = Cy, R = tBu (3a)], as yellow solid in 94% yield. However, a similar reaction of 1b and 1c with 2 equiv of phenyl isocyanates at ambient temperature resulted in the formation of corresponding titanium bis(ureate) complexes [(Im(R)N)Ti{κ(2)-OC(NMe2)NPh}2(NMe2)] (R = Mes, 4b and R = Dipp, 4c). Three equivalents of phenyl isothiocyanate reacted with complex 1c to afford respective titanium tris(thioureate) complex [(Im(Dipp)N)Ti{κ(2)-SC(NMe2)NPh}2{κ(1)-SC(NMe2)NPh}] (6c). The molecular structures of 1a-c, 2a, 2c, 3a, 4c, and 6c were established by X-ray diffraction analyses, and, from the solid-state structures of 1a-c, 2a, 2c, 3a, 4c, and 6c, it was confirmed that the imidazolin-2-iminato titanium bond in each case is very short and possesses a multiple-bonding character. The imidazolin-2-iminato titanium complex 1c was utilized as a precatalyst for the addition of amine N-H bond to phenyl isocyanate. High yields of the corresponding urea derivatives were achieved under mild conditions. The mechanistic study of the aforementioned catalytic reaction was performed, and the active catalyst complex 7b was isolated using 2 equiv of iminopyrrole [2-(2,6-iPr2C6H3N═CH)C4H3NH] and the complex 4b. The molecular structure of 7b was thereafter established.

2.
Dalton Trans ; 44(16): 7458-69, 2015 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-25803640

RESUMO

The synthesis and isolation of two potassium, one lithium and two calcium complexes of imidazol-2-ylidene-N'-phenylureate ligands [Im(R)NCON(H)Ph] [(R = tBu (1a); Mes (1b) and Dipp (1c); Mes = mesityl, Dipp = 2,6-diisopropylphenyl] are described. Potassium complexes, [{κ(2)-(Im(Mes)NCONPh)K}4] (2b) and [{κ(3)-(Im(Dipp)NCONPh)K}2{KN(SiMe3)2}2]n (2c), were prepared in good yields by the reactions of 1b and 1c, respectively, with potassium bis(trimethyl)silyl amide at ambient temperature in toluene. Lithium complex [{(2,6-tBu2-4-Me-C6H2O)Li(Im(tBu)NCON(H)Ph)}2{Im(tBu)NCON(H)Ph}] (3a) was isolated by a one-pot reaction between 1a and LiCH2SiMe3, followed by the addition of 2,6-tBu2-4-Me-C6H2OH in toluene. Calcium complex [{κ(2)-(Im(tBu)NCONPh)Ca{N(SiMe3)2}-{KN(SiMe3)2}]n (4a) was isolated by the one-pot reaction of 1a with [KN(SiMe3)2] and calcium diiodide in THF at ambient temperature. The solid-state structures of ligand 1a and complexes 2b, 2c, 3a and 4a were confirmed by single-crystal X-ray diffraction analysis. It was observed that potassium was coordinated to the oxygen atom of urea group and to the nitrogen atom of the imidazolin-2-imine group, in the solid-state structure of 2b. In complex 4a, the calcium ion was ligated to the monoanionic imidazol-2-ylidene-N'-phenylureate ligand in a bi-dentate (κ(2)) fashion through the oxygen and nitrogen atoms of the isocyanate building block leaving the imidazolin-2-imine fragment uncoordinated. In the solid state of the potassium complex 2c, tri-dentate (κ(3)) coordination from the imidazol-2-ylidene-N'-phenylureate ligand was observed through the oxygen and nitrogen atoms of the isocyanate building block and of the imidazolin-2-imine fragment. In contrast, in the dimeric lithium complex 3a, the neutral imidazol-2-ylidene-N'-phenylureate ligand was bound to the lithium centre in a mono-dentate fashion (κ(1)) through an oxygen atom of the isocyanate moiety. It is to be noted that in each complex thus observed, the elongated carbon-nitrogen bond distances indicate substantial electron delocalisation from the imidazole ring to the ureate group present in ligand 1.

3.
Dalton Trans ; 43(39): 14876-88, 2014 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-25177841

RESUMO

We report here a number of dianionic 1,4-diaza-1,3-butadiene complexes of titanium and zirconium synthesised by a salt metathesis reaction. The reaction of either CpTiCl3 or Cp2TiCl2 with the dilithium salt of N,N'-bis(2,6-diisopropylphenyl)-1,4-diaza-1,3-butadiene [; abbreviated (Dipp)2DADLi2] afforded the mono-cyclopentadienyl titanium complex [η(5)-CpTi((Dipp)2DAD)Cl] () bearing a dianionic ene-diamide ligand, while the analogous reaction of zirconocene dichloride (Cp2ZrCl2) with the dilithium salt gave the bis-cyclopentadienyl zirconium complex [Cp2Zr{(Dipp)2DAD}] (). The metal dichloride complexes [Ti((Dipp)2DAD)Cl2] () and [{(Dipp)2DADZrCl(µ-Cl)}2(κ(3)-Cl)(Li)(OEt2)2] () were obtained by the reaction of and anhydrous metal tetrachloride in a 1 : 1 molar ratio in diethyl ether at room temperature. Meanwhile, the homoleptic titanium complex [Ti{((Dipp)2DAD)}2] () was isolated in good yield by the treatment of with TiCl4 in a 1 : 2 molar ratio in diethyl ether. The complexes and were further reacted with neosilyl lithium to afford mono- and bis-alkyl complexes of titanium [η(5)-CpTi{(Dipp)2DAD}(CH2SiMe3)] () and zirconium [Zr{(Dipp)2DAD}(CH2SiMe3)2] () respectively. Molecular structures of the complexes , , and in the solid states were confirmed by single crystal X-ray diffraction analysis. The solid state structures of all the complexes reveal that the metal ions are chelated through the amido-nitrogen atoms and the olefinic carbons of the [(Dipp)2DAD](2-) moiety, satisfying the σ(2),π coordination mode. Compound was used as a catalyst for the intermolecular hydrosilylation reaction of a number of olefins, and moderate activity of catalyst was observed.

4.
Dalton Trans ; 42(14): 4947-56, 2013 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-23385527

RESUMO

We report here a series of heavier alkaline earth metal complexes with a phosphinoselenoic amide ligand using two synthetic routes. In the first route, the heavier alkaline earth metal bis(trimethylsilyl)amides [M{N(SiMe3)2}2(THF)n] (M = Ca, Sr, Ba) were treated with phosphinoselenoic amine [Ph2P(Se)NH(CHPh2)] (3), prepared by the treatment of bulky phosphinamines [Ph2PNH(CHPh2)] (1) with elemental selenium in THF, and afforded homoleptic alkaline earth metal complexes of composition [M(THF)2{Ph2P(Se)N(CHPh2)}2] (M = Ca (7), Sr (8), Ba (9)). The metal complexes 7­9 can also be obtained via salt metathesis route where the alkali metal phosphinoselenoic amides of composition [{(THF)2M'Ph2P(Se)N(CHPh2)}2] (M' = Na (5) and K (6)) were reacted with respective metal diiodides in THF at ambient temperature. The solid state structures of the alkali metal complexes 5­6 and alkaline earth metal complexes 7­9 were established by single crystal X-ray diffraction analysis. In the solid state, alkali metal complexes 5 and 6 are dimeric and form a poly-metallacyclic structural motif. In contrast, complexes 7­9 are monomeric and a direct metal­selenium bond is observed in each case.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA