Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Nature ; 613(7943): 383-390, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36599982

RESUMO

Specific, regulated modification of RNAs is important for proper gene expression1,2. tRNAs are rich with various chemical modifications that affect their stability and function3,4. 7-Methylguanosine (m7G) at tRNA position 46 is a conserved modification that modulates steady-state tRNA levels to affect cell growth5,6. The METTL1-WDR4 complex generates m7G46 in humans, and dysregulation of METTL1-WDR4 has been linked to brain malformation and multiple cancers7-22. Here we show how METTL1 and WDR4 cooperate to recognize RNA substrates and catalyse methylation. A crystal structure of METTL1-WDR4 and cryo-electron microscopy structures of METTL1-WDR4-tRNA show that the composite protein surface recognizes the tRNA elbow through shape complementarity. The cryo-electron microscopy structures of METTL1-WDR4-tRNA with S-adenosylmethionine or S-adenosylhomocysteine along with METTL1 crystal structures provide additional insights into the catalytic mechanism by revealing the active site in multiple states. The METTL1 N terminus couples cofactor binding with conformational changes in the tRNA, the catalytic loop and the WDR4 C terminus, acting as the switch to activate m7G methylation. Thus, our structural models explain how post-translational modifications of the METTL1 N terminus can regulate methylation. Together, our work elucidates the core and regulatory mechanisms underlying m7G modification by METTL1, providing the framework to understand its contribution to biology and disease.


Assuntos
Microscopia Crioeletrônica , Proteínas de Ligação ao GTP , Metilação , Metiltransferases , Processamento Pós-Transcricional do RNA , RNA de Transferência , Humanos , Domínio Catalítico , Cristalografia por Raios X , Proteínas de Ligação ao GTP/química , Proteínas de Ligação ao GTP/metabolismo , Proteínas de Ligação ao GTP/ultraestrutura , Metiltransferases/química , Metiltransferases/metabolismo , Metiltransferases/ultraestrutura , RNA de Transferência/química , RNA de Transferência/metabolismo , RNA de Transferência/ultraestrutura , S-Adenosil-Homocisteína/metabolismo , S-Adenosilmetionina/metabolismo , Especificidade por Substrato , Biocatálise
2.
Mol Cell ; 78(3): 411-422.e4, 2020 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-32220646

RESUMO

Metazoan microRNAs require specific maturation steps initiated by Microprocessor, comprising Drosha and DGCR8. Lack of structural information for the assembled complex has hindered an understanding of how Microprocessor recognizes primary microRNA transcripts (pri-miRNAs). Here we present a cryoelectron microscopy structure of human Microprocessor with a pri-miRNA docked in the active site, poised for cleavage. The basal junction is recognized by a four-way intramolecular junction in Drosha, triggered by the Belt and Wedge regions that clamp over the ssRNA. The belt is important for efficiency and accuracy of pri-miRNA processing. Two dsRBDs form a molecular ruler to measure the stem length between the two dsRNA-ssRNA junctions. The specific organization of the dsRBDs near the apical junction is independent of Drosha core domains, as observed in a second structure in the partially docked state. Collectively, we derive a molecular model to explain how Microprocessor recognizes a pri-miRNA and accurately identifies the cleavage site.


Assuntos
MicroRNAs/química , Proteínas de Ligação a RNA/química , Ribonuclease III/química , Microscopia Crioeletrônica , Humanos , MicroRNAs/metabolismo , Modelos Moleculares , Conformação Proteica , RNA de Cadeia Dupla/química , RNA de Cadeia Dupla/metabolismo , Proteínas de Ligação a RNA/metabolismo , Ribonuclease III/metabolismo
3.
Mol Cell ; 75(3): 417-418, 2019 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-31398320

RESUMO

In two recent publications in Molecular Cell,Boulias et al. (2019) and Sendinc et al. (2019) use complementary approaches to map m6Am modification sites transcriptome-wide and demonstrate that m6Am can repress translation while increasing the stability of a subset of low-abundance transcripts.


Assuntos
Processamento de Proteína Pós-Traducional , Transcriptoma , Metilação , RNA Mensageiro
4.
Cell ; 147(5): 1080-91, 2011 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-22078496

RESUMO

MicroRNAs (miRNAs) are small noncoding RNA molecules that regulate gene expression. Among these, members of the let-7 miRNA family control many cell-fate determination genes to influence pluripotency, differentiation, and transformation. Lin28 is a specific, posttranscriptional inhibitor of let-7 biogenesis. We report crystal structures of mouse Lin28 in complex with sequences from let-7d, let-7-f1, and let-7 g precursors. The two folded domains of Lin28 recognize two distinct regions of the RNA and are sufficient for inhibition of let-7 in vivo. We also show by NMR spectroscopy that the linker connecting the two folded domains is flexible, accommodating Lin28 binding to diverse let-7 family members. Protein-RNA complex formation imposes specific conformations on both components that could affect downstream recognition by other processing factors. Our data provide a molecular explanation for Lin28 specificity and a model for how it regulates let-7.


Assuntos
MicroRNAs/química , Proteínas de Ligação a RNA/química , Sequência de Aminoácidos , Animais , Sequência de Bases , Sítios de Ligação , Cristalografia por Raios X , Camundongos , MicroRNAs/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Proteínas de Ligação a RNA/metabolismo , Alinhamento de Sequência
5.
Mol Cell ; 71(6): 1001-1011.e4, 2018 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-30197297

RESUMO

S-adenosylmethionine (SAM) is an essential metabolite that acts as a cofactor for most methylation events in the cell. The N6-methyladenosine (m6A) methyltransferase METTL16 controls SAM homeostasis by regulating the abundance of SAM synthetase MAT2A mRNA in response to changing intracellular SAM levels. Here we present crystal structures of METTL16 in complex with MAT2A RNA hairpins to uncover critical molecular mechanisms underlying the regulated activity of METTL16. The METTL16-RNA complex structures reveal atomic details of RNA substrates that drive productive methylation by METTL16. In addition, we identify a polypeptide loop in METTL16 near the SAM binding site with an autoregulatory role. We show that mutations that enhance or repress METTL16 activity in vitro correlate with changes in MAT2A mRNA levels in cells. Thus, we demonstrate the structural basis for the specific activity of METTL16 and further suggest the molecular mechanisms by which METTL16 efficiency is tuned to regulate SAM homeostasis.


Assuntos
Metiltransferases/metabolismo , Metiltransferases/ultraestrutura , Regiões 3' não Traduzidas , Adenosina/análogos & derivados , Sítios de Ligação , Células HEK293 , Homeostase , Humanos , Metionina Adenosiltransferase/metabolismo , Metilação , Metiltransferases/fisiologia , RNA , RNA Mensageiro , RNA Nuclear Pequeno/metabolismo , S-Adenosilmetionina/metabolismo
6.
Nucleic Acids Res ; 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38808663

RESUMO

pre-mRNA splicing is a critical feature of eukaryotic gene expression. Both cis- and trans-splicing rely on accurately recognising splice site sequences by spliceosomal U snRNAs and associated proteins. Spliceosomal snRNAs carry multiple RNA modifications with the potential to affect different stages of pre-mRNA splicing. Here, we show that the conserved U6 snRNA m6A methyltransferase METT-10 is required for accurate and efficient cis- and trans-splicing of C. elegans pre-mRNAs. The absence of METT-10 in C. elegans and METTL16 in humans primarily leads to alternative splicing at 5' splice sites with an adenosine at +4 position. In addition, METT-10 is required for splicing of weak 3' cis- and trans-splice sites. We identified a significant overlap between METT-10 and the conserved splicing factor SNRNP27K in regulating 5' splice sites with +4A. Finally, we show that editing endogenous 5' splice site +4A positions to +4U restores splicing to wild-type positions in a mett-10 mutant background, supporting a direct role for U6 snRNA m6A modification in 5' splice site recognition. We conclude that the U6 snRNA m6A modification is important for accurate and efficient pre-mRNA splicing.

7.
Mol Cell ; 63(2): 306-317, 2016 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-27373337

RESUMO

N(6)-methyladenosine (m(6)A) is a prevalent, reversible chemical modification of functional RNAs and is important for central events in biology. The core m(6)A writers are Mettl3 and Mettl14, which both contain methyltransferase domains. How Mettl3 and Mettl14 cooperate to catalyze methylation of adenosines has remained elusive. We present crystal structures of the complex of Mettl3/Mettl14 methyltransferase domains in apo form as well as with bound S-adenosylmethionine (SAM) or S-adenosylhomocysteine (SAH) in the catalytic site. We determine that the heterodimeric complex of methyltransferase domains, combined with CCCH motifs, constitutes the minimally required regions for creating m(6)A modifications in vitro. We also show that Mettl3 is the catalytically active subunit, while Mettl14 plays a structural role critical for substrate recognition. Our model provides a molecular explanation for why certain mutations of Mettl3 and Mettl14 lead to impaired function of the methyltransferase complex.


Assuntos
Metiltransferases/metabolismo , RNA/metabolismo , Adenosina/análogos & derivados , Adenosina/metabolismo , Regulação Alostérica , Sítios de Ligação , Domínio Catalítico , Células HEK293 , Humanos , Metilação , Metiltransferases/química , Metiltransferases/genética , Modelos Moleculares , Mutação , Ligação Proteica , Conformação Proteica , RNA/química , RNA/genética , S-Adenosil-Homocisteína/metabolismo , S-Adenosilmetionina/metabolismo , Relação Estrutura-Atividade
8.
Mol Cell ; 63(3): 420-32, 2016 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-27425409

RESUMO

Recent studies suggest that the microprocessor (Drosha-DGCR8) complex can be recruited to chromatin to catalyze co-transcriptional processing of primary microRNAs (pri-miRNAs) in mammalian cells. However, the molecular mechanism of co-transcriptional miRNA processing is poorly understood. Here we find that HP1BP3, a histone H1-like chromatin protein, specifically associates with the microprocessor and promotes global miRNA biogenesis in human cells. Chromatin immunoprecipitation (ChIP) studies reveal genome-wide co-localization of HP1BP3 and Drosha and HP1BP3-dependent Drosha binding to actively transcribed miRNA loci. Moreover, HP1BP3 specifically binds endogenous pri-miRNAs and facilitates the Drosha/pri-miRNA association in vivo. Knockdown of HP1BP3 compromises pri-miRNA processing by causing premature release of pri-miRNAs from the chromatin. Taken together, these studies suggest that HP1BP3 promotes co-transcriptional miRNA processing via chromatin retention of nascent pri-miRNA transcripts. This work significantly expands the functional repertoire of the H1 family of proteins and suggests the existence of chromatin retention factors for widespread co-transcriptional miRNA processing.


Assuntos
Cromatina/metabolismo , MicroRNAs/biossíntese , Proteínas Nucleares/metabolismo , Processamento Pós-Transcricional do RNA , Transcrição Gênica , Animais , Sítios de Ligação , Cromatina/genética , Imunoprecipitação da Cromatina , DNA Polimerase II/genética , DNA Polimerase II/metabolismo , Proteínas de Ligação a DNA , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Genoma Humano , Células HeLa , Humanos , MicroRNAs/genética , Proteínas Nucleares/genética , Ligação Proteica , Interferência de RNA , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Ribonuclease III/genética , Ribonuclease III/metabolismo , Transfecção
9.
Nature ; 469(7331): 564-7, 2011 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-21240259

RESUMO

The essential mammalian enzyme O-linked ß-N-acetylglucosamine transferase (O-GlcNAc transferase, here OGT) couples metabolic status to the regulation of a wide variety of cellular signalling pathways by acting as a nutrient sensor. OGT catalyses the transfer of N-acetylglucosamine from UDP-N-acetylglucosamine (UDP-GlcNAc) to serines and threonines of cytoplasmic, nuclear and mitochondrial proteins, including numerous transcription factors, tumour suppressors, kinases, phosphatases and histone-modifying proteins. Aberrant glycosylation by OGT has been linked to insulin resistance, diabetic complications, cancer and neurodegenerative diseases including Alzheimer's. Despite the importance of OGT, the details of how it recognizes and glycosylates its protein substrates are largely unknown. We report here two crystal structures of human OGT, as a binary complex with UDP (2.8 Å resolution) and as a ternary complex with UDP and a peptide substrate (1.95 Å). The structures provide clues to the enzyme mechanism, show how OGT recognizes target peptide sequences, and reveal the fold of the unique domain between the two halves of the catalytic region. This information will accelerate the rational design of biological experiments to investigate OGT's functions; it will also help the design of inhibitors for use as cellular probes and help to assess its potential as a therapeutic target.


Assuntos
Modelos Moleculares , N-Acetilglucosaminiltransferases/química , Domínio Catalítico , Humanos , N-Acetilglucosaminiltransferases/metabolismo , Peptídeos/química , Peptídeos/metabolismo , Estrutura Terciária de Proteína , Difosfato de Uridina/metabolismo
10.
Nature ; 455(7215): 936-43, 2008 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-18923516

RESUMO

Most proteins are secreted from bacteria by the interaction of the cytoplasmic SecA ATPase with a membrane channel, formed by the heterotrimeric SecY complex. Here we report the crystal structure of SecA bound to the SecY complex, with a maximum resolution of 4.5 ångström (A), obtained for components from Thermotoga maritima. One copy of SecA in an intermediate state of ATP hydrolysis is bound to one molecule of the SecY complex. Both partners undergo important conformational changes on interaction. The polypeptide-cross-linking domain of SecA makes a large conformational change that could capture the translocation substrate in a 'clamp'. Polypeptide movement through the SecY channel could be achieved by the motion of a 'two-helix finger' of SecA inside the cytoplasmic funnel of SecY, and by the coordinated tightening and widening of SecA's clamp above the SecY pore. SecA binding generates a 'window' at the lateral gate of the SecY channel and it displaces the plug domain, preparing the channel for signal sequence binding and channel opening.


Assuntos
Adenosina Trifosfatases/química , Adenosina Trifosfatases/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/metabolismo , Thermotoga maritima/química , Trifosfato de Adenosina/metabolismo , Bacillus subtilis/química , Cristalografia por Raios X , Hidrólise , Modelos Biológicos , Modelos Moleculares , Movimento , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Ligação Proteica , Conformação Proteica , Sinais Direcionadores de Proteínas/fisiologia , Transporte Proteico , Canais de Translocação SEC , Proteínas SecA , Relação Estrutura-Atividade
11.
Nature ; 455(7215): 984-7, 2008 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-18923526

RESUMO

An important step in the biosynthesis of many proteins is their partial or complete translocation across the plasma membrane in prokaryotes or the endoplasmic reticulum membrane in eukaryotes. In bacteria, secretory proteins are generally translocated after completion of their synthesis by the interaction of the cytoplasmic ATPase SecA and a protein-conducting channel formed by the SecY complex. How SecA moves substrates through the SecY channel is unclear. However, a recent structure of a SecA-SecY complex raises the possibility that the polypeptide chain is moved by a two-helix finger domain of SecA that is inserted into the cytoplasmic opening of the SecY channel. Here we have used disulphide-bridge crosslinking to show that the loop at the tip of the two-helix finger of Escherichia coli SecA interacts with a polypeptide chain right at the entrance into the SecY pore. Mutagenesis demonstrates that a tyrosine in the loop is particularly important for translocation, but can be replaced by some other bulky, hydrophobic residues. We propose that the two-helix finger of SecA moves a polypeptide chain into the SecY channel with the tyrosine providing the major contact with the substrate, a mechanism analogous to that suggested for hexameric, protein-translocating ATPases.


Assuntos
Adenosina Trifosfatases/química , Adenosina Trifosfatases/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Escherichia coli/enzimologia , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/metabolismo , Adenosina Trifosfatases/genética , Motivos de Aminoácidos , Proteínas de Bactérias/genética , Reagentes de Ligações Cruzadas , Dissulfetos/química , Dissulfetos/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Proteínas de Membrana Transportadoras/genética , Modelos Biológicos , Modelos Moleculares , Conformação Proteica , Transporte Proteico , Canais de Translocação SEC , Proteínas SecA , Relação Estrutura-Atividade , Tirosina/metabolismo
12.
J Clin Invest ; 134(8)2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38618952

RESUMO

N6-Methyladenosine (m6A) is the most abundant posttranscriptional modification, and its contribution to cancer evolution has recently been appreciated. Renal cancer is the most common adult genitourinary cancer, approximately 85% of which is accounted for by the clear cell renal cell carcinoma (ccRCC) subtype characterized by VHL loss. However, it is unclear whether VHL loss in ccRCC affects m6A patterns. In this study, we demonstrate that VHL binds and promotes METTL3/METTL14 complex formation while VHL depletion suppresses m6A modification, which is distinctive from its canonical E3 ligase role. m6A RNA immunoprecipitation sequencing (RIP-Seq) coupled with RNA-Seq allows us to identify a selection of genes whose expression may be regulated by VHL-m6A signaling. Specifically, PIK3R3 is identified to be a critical gene whose mRNA stability is regulated by VHL in a m6A-dependent but HIF-independent manner. Functionally, PIK3R3 depletion promotes renal cancer cell growth and orthotopic tumor growth while its overexpression leads to decreased tumorigenesis. Mechanistically, the VHL-m6A-regulated PIK3R3 suppresses tumor growth by restraining PI3K/AKT activity. Taken together, we propose a mechanism by which VHL regulates m6A through modulation of METTL3/METTL14 complex formation, thereby promoting PIK3R3 mRNA stability and protein levels that are critical for regulating ccRCC tumorigenesis.


Assuntos
Adenina , Carcinoma de Células Renais , Neoplasias Renais , Adulto , Humanos , Carcinogênese/genética , Carcinoma de Células Renais/genética , Transformação Celular Neoplásica , Expressão Gênica , Neoplasias Renais/genética , Metiltransferases/genética , Fosfatidilinositol 3-Quinases/genética
13.
bioRxiv ; 2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36993753

RESUMO

Chemical modification of RNAs is important for post-transcriptional gene regulation. The METTL3-METTL14 complex generates most N 6 -methyladenosine (m 6 A) modifications in mRNAs, and dysregulated methyltransferase expression has been linked to numerous cancers. Here we show that changes in m 6 A modification location can impact oncogenesis. A gain-of-function missense mutation found in cancer patients, METTL14 R298P , promotes malignant cell growth in culture and in transgenic mice. The mutant methyltransferase preferentially modifies noncanonical sites containing a GGAU motif and transforms gene expression without increasing global m 6 A levels in mRNAs. The altered substrate specificity is intrinsic to METTL3-METTL14, helping us to propose a structural model for how the METTL3-METTL14 complex selects the cognate RNA sequences for modification. Together, our work highlights that sequence-specific m 6 A deposition is important for proper function of the modification and that noncanonical methylation events can impact aberrant gene expression and oncogenesis.

14.
bioRxiv ; 2023 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-37745402

RESUMO

pre-mRNA splicing is a critical feature of eukaryotic gene expression. Many eukaryotes use cis-splicing to remove intronic sequences from pre-mRNAs. In addition to cis-splicing, many organisms use trans-splicing to replace the 5' ends of mRNAs with a non-coding spliced-leader RNA. Both cis- and trans-splicing rely on accurately recognising splice site sequences by spliceosomal U snRNAs and associated proteins. Spliceosomal snRNAs carry multiple RNA modifications with the potential to affect different stages of pre-mRNA splicing. Here, we show that m6A modification of U6 snRNA A43 by the RNA methyltransferase METT-10 is required for accurate and efficient cis- and trans-splicing of C. elegans pre-mRNAs. The absence of U6 snRNA m6A modification primarily leads to alternative splicing at 5' splice sites. Furthermore, weaker 5' splice site recognition by the unmodified U6 snRNA A43 affects splicing at 3' splice sites. U6 snRNA m6A43 and the splicing factor SNRNP27K function to recognise an overlapping set of 5' splice sites with an adenosine at +4 position. Finally, we show that U6 snRNA m6A43 is required for efficient SL trans-splicing at weak 3' trans-splice sites. We conclude that the U6 snRNA m6A modification is important for accurate and efficient cis- and trans-splicing in C. elegans.

15.
Acta Crystallogr D Biol Crystallogr ; 68(Pt 3): 261-7, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22349228

RESUMO

Deformable elastic network (DEN) restraints have proved to be a powerful tool for refining structures from low-resolution X-ray crystallographic data sets. Unfortunately, optimal refinement using DEN restraints requires extensive calculations and is often hindered by a lack of access to sufficient computational resources. The DEN web service presented here intends to provide structural biologists with access to resources for running computationally intensive DEN refinements in parallel on the Open Science Grid, the US cyberinfrastructure. Access to the grid is provided through a simple and intuitive web interface integrated into the SBGrid Science Portal. Using this portal, refinements combined with full parameter optimization that would take many thousands of hours on standard computational resources can now be completed in several hours. An example of the successful application of DEN restraints to the human Notch1 transcriptional complex using the grid resource, and summaries of all submitted refinements, are presented as justification.


Assuntos
Biologia Computacional/métodos , Cristalografia por Raios X/métodos , Software , Sistemas Computacionais , Internet , Interface Usuário-Computador
16.
Curr Opin Struct Biol ; 76: 102442, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36067707

RESUMO

MicroRNAs are prevalent regulators of gene expression, controlling most of the proteome in multicellular organisms. To generate the functional small RNAs, precise processing steps are required. In animals, microRNA biogenesis is initiated by Microprocessor that minimally consists of the Drosha enzyme and its partner, DGCR8. This first step is critical for selecting primary microRNAs, and many RNA-binding proteins and regulatory pathways target both the accuracy and efficiency of microRNA maturation. Structures of Drosha and DGCR8 in complex with primary microRNAs elucidate how RNA structural features rather than sequence provide the framework for substrate recognition. Comparing multiple states of Microprocessor and the closely related Dicer homologs shed light on the dynamic protein-RNA complex assembly and disassembly required to recognize RNAs with diverse sequences via common structural features.


Assuntos
MicroRNAs , Animais , MicroRNAs/química , MicroRNAs/genética , MicroRNAs/metabolismo , Proteoma/metabolismo , Processamento Pós-Transcricional do RNA , Proteínas de Ligação a RNA/química
17.
Nat Cell Biol ; 24(2): 205-216, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35145225

RESUMO

METTL16 has recently been identified as an RNA methyltransferase responsible for the deposition of N6-methyladenosine (m6A) in a few transcripts. Whether METTL16 methylates a large set of transcripts, similar to METTL3 and METTL14, remains unclear. Here we show that METTL16 exerts both methyltransferase activity-dependent and -independent functions in gene regulation. In the cell nucleus, METTL16 functions as an m6A writer to deposit m6A into hundreds of its specific messenger RNA targets. In the cytosol, METTL16 promotes translation in an m6A-independent manner. More specifically, METTL16 directly interacts with the eukaryotic initiation factors 3a and -b as well as ribosomal RNA through its Mtase domain, thereby facilitating the assembly of the translation-initiation complex and promoting the translation of over 4,000 mRNA transcripts. Moreover, we demonstrate that METTL16 is critical for the tumorigenesis of hepatocellular carcinoma. Collectively, our studies reveal previously unappreciated dual functions of METTL16 as an m6A writer and a translation-initiation facilitator, which together contribute to its essential function in tumorigenesis.


Assuntos
Adenosina/análogos & derivados , Carcinogênese/metabolismo , Carcinoma Hepatocelular/enzimologia , Neoplasias Hepáticas/enzimologia , Metiltransferases/metabolismo , Biossíntese de Proteínas , Processamento Pós-Transcricional do RNA , RNA Mensageiro/metabolismo , Adenosina/metabolismo , Animais , Carcinogênese/genética , Carcinogênese/patologia , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Citosol/enzimologia , Fator de Iniciação 3 em Eucariotos/genética , Fator de Iniciação 3 em Eucariotos/metabolismo , Regulação Neoplásica da Expressão Gênica , Células HEK293 , Células Hep G2 , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Metiltransferases/genética , Camundongos Endogâmicos NOD , Camundongos SCID , RNA Mensageiro/genética , RNA Ribossômico/genética , RNA Ribossômico/metabolismo , Transdução de Sinais , Carga Tumoral
18.
Mol Cell Biol ; 26(16): 6261-71, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16880534

RESUMO

NOTCH1 is a large type I transmembrane receptor that regulates normal T-cell development via a signaling pathway that relies on regulated proteolysis. Ligand binding induces proteolytic cleavages in NOTCH1 that release its intracellular domain (ICN1), which translocates to the nucleus and activates target genes by forming a short-lived nuclear complex with two other proteins, the DNA-binding factor CSL and a Mastermind-like (MAML) coactivator. Recent work has shown that human T-ALL is frequently associated with C-terminal NOTCH1 truncations, which uniformly remove sequences lying between residues 2524 and 2556. This region includes the highly conserved sequence WSSSSP (S4), which based on its amino acid content appeared to be a likely site for regulatory serine phosphorylation events. We show here that the mutation of the S4 sequence leads to hypophosphorylation of ICN1; increased NOTCH1 signaling; and the stabilization of complexes containing ICN1, CSL, and MAML1. Consistent with these in vitro studies, mutation of the WSSSSP sequence converts nonleukemogenic weak gain-of-function NOTCH1 alleles into alleles that cause aggressive T-ALLs in a murine bone marrow transplant model. These studies indicate that S4 is an important negative regulatory sequence and that the deletion of S4 likely contributes to the development of human T-ALL.


Assuntos
Sequência Conservada/genética , Regulação para Baixo/genética , Neoplasias/patologia , Receptor Notch1/metabolismo , Sequências Reguladoras de Ácido Nucleico/genética , Sequência de Aminoácidos , Animais , Células Cultivadas , Quinase 8 Dependente de Ciclina , Quinases Ciclina-Dependentes/metabolismo , Humanos , Leucemia-Linfoma de Células T do Adulto/patologia , Camundongos , Dados de Sequência Molecular , Mutação/genética , Células NIH 3T3 , Peptídeos/química , Fosforilação , Estrutura Terciária de Proteína , Provírus/genética , Receptor Notch1/química , Termodinâmica
19.
Cell Rep ; 29(12): 4024-4035.e5, 2019 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-31851931

RESUMO

DDX17, a DEAD-box ATPase, is a multifunctional helicase important for various RNA functions, including microRNA maturation. Key questions for DDX17 include how it recognizes target RNAs and influences their structures, as well as how its ATPase activity may be regulated. Through crystal structures and biochemical assays, we show the ability of the core catalytic domains of DDX17 to recognize specific sequences in target RNAs. The RNA sequence preference of the catalytic core is critical for DDX17 to directly bind and remodel a specific region of primary microRNAs 3' to the mature sequence, and consequently enhance processing by Drosha. Furthermore, we identify an intramolecular interaction between the N-terminal tail and the DEAD domain of DDX17 to have an autoregulatory role in controlling the ATPase activity. Thus, we provide the molecular basis for how cognate RNA recognition and functional outcomes are linked for DDX17.


Assuntos
Adenosina Trifosfatases/metabolismo , RNA Helicases DEAD-box/química , RNA Helicases DEAD-box/metabolismo , MicroRNAs/química , MicroRNAs/metabolismo , Processamento Pós-Transcricional do RNA , Cristalografia por Raios X , RNA Helicases DEAD-box/genética , Células HEK293 , Homeostase , Humanos , MicroRNAs/genética , Conformação Proteica
20.
Nat Commun ; 9(1): 3852, 2018 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-30228298

RESUMO

The original version of this Article contained an error in Fig. 1. In panel d, the model on the right of the panel was incorrectly labeled '+Heme', and should have read '- Heme'. This has now been corrected in both the PDF and HTML versions of the Article.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA